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1 Introduction

A new and interesting holographic perspective on the physics of superfluids and super-

conductors was provided by refs. [1, 2]. These papers, which rely on the AdS/CFT cor-

respondence [3–5], provide a dual description of the superconducting phase transition as

the instability of a charged black hole to develop scalar hair. Recalling that the AdS/CFT

correspondence maps a strongly interacting field theory to a classical gravity description,

this new perspective holds promise for deepening our understanding of superconductivity

in strongly interacting regimes where BCS theory [6] is inadequate.1

1See ref. [7] for a review of the limits of BCS theory when confronted with high temperature supercon-

ductivity.
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This paper takes as its starting point the holographic model proposed in refs. [8–10].

While in refs. [1, 2] the black hole develops scalar hair at the phase transition, in refs. [8–10]

the black hole develops non-abelian hair. More precisely, refs. [1, 2] begin with gravity plus

an abelian gauge field and charged scalar, while refs. [8–10] omit the scalar and promote

the abelian field to a non-abelian SU(2) gauge field. Recall that the AdS/CFT dictionary

maps gauge fields on the gravity side of the duality to global symmetries in the field theory.

We are intentionally vague about the distinction between a superfluid and supercon-

ductor. As emphasized in ref. [11], technically, the field theory dual to the black hole

construction undergoes a superfluid phase transition, i.e. spontaneous symmetry breaking

of a global symmetry. To interpret this transition as a superconducting phase transition,

the global symmetry must be weakly gauged. For many questions about superconductivity,

the distinction is irrelevant, and from the current-current two point functions we calculate

below, we can extract meaningful conductivities.

This SU(2) system has many desirable features compared to the scalar system. The

scalar system appears to be less universal; one must specify a potential for the scalar, or

at the very least a mass term. In comparison, up to the strength of the gravitational and

gauge couplings, the form of the Lagrangian for the SU(2) system is completely specified

by gauge invariance. Also, it appears more straightforward to embed the SU(2) system in

string theory or other UV completions. (See however ref. [12] for recent progress with the

scalar system.) This embedding can move the SU(2) system out of the toy model realm

and give us a microscopic Lagrangian for the field theory. Refs. [13, 14] discuss one possible

embedding where the SU(2) is a global flavor symmetry group for N = 4 super Yang-Mills

broken to N = 2 by the addition of two hypermultiplets.2

Our reason for choosing this SU(2) system is very simple: We can get analytic results

near the phase transition. The differential equations that describe these holographic sys-

tems are nonlinear, and analytic solutions do not appear to be available in most cases. The

studies mentioned above make extensive use of numerics to see the phase transition, to

calculate the conductivities and critical exponents. Analytic results, for example the low

temperature approximation of the conductivity in ref. [2], are scarce.3 Our starting point

is the remarkable observation in ref. [13] that the zero mode for the phase transition for an

SU(2) gauge field in AdS5 has a simple analytic form. From this zero mode, we are able

to extract a long list of properties near the phase transition:

1. The speed of second sound near the phase transition.

2. That the phase transition is second order.

2The most naive embedding does not actually work. The original AdS/CFT correspondence gives us

a duality between N = 4 super Yang Mills and string theory in the curved background AdS5 × S5. This

string theory can be approximated at low energies by a gauged supergravity in AdS5. The SU(4) gauge field,

which maps to the SU(4) global R-symmetry in the field theory, has an SU(2) subgroup. Unfortunately,

supersymmetry constrains the relationship between the gauge field coupling and the gravitational coupling

in this model, and the gauge field coupling is too weak for a superconducting phase transition to occur [10].
3See refs. [15, 16] for other nice analytic results for this class of models.
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3. The conductivity and in particular the residue of the pole in the imaginary part of

the conductivity.

4. The system satisfies a London type equation that implies a Meissner effect.

5. A large selection of current-current Green’s functions in the hydrodynamic limit, and

that they satisfy the appropriate non-abelian Ward identities.

To clarify the title of the paper, recall that in a two component fluid, there are typ-

ically two propagating collective modes. The first mode corresponds to ordinary sound

in which the two components move in phase. The second mode corresponds to second

sound in which the two components move out of phase. Typically, ordinary sound can

be produced by pressure oscillations while second sound couples much more strongly to

temperature oscillations [17].

The order parameter for the phase transition in our SU(2) model is the set of non-

abelian global SU(2) currents, jµ
a . As pioneered in ref. [8], we introduce by hand a chemical

potential in the third isospin direction which induces a charge density, 〈jt
3〉 6= 0, that breaks

both the global SU(2) symmetry to a U(1) sugroup and also Lorentz invariance. There

is a superconducting phase transition at a critical temperature Tc, below which a current

develops orthogonal to the third isospin direction that completely breaks the residual U(1)

symmetry and also breaks the remaining rotational symmetry of the system to U(1). For

convenience, we take this current to be in the direction 〈j1
x〉, leaving a rotational symmetry

in the yz-plane.

The fact that rotational symmetry is broken in the superconducting phase makes the

physics of this model rich and complicated. Our model appears to be a holographic real-

ization of the type of scenario described from a formal perturbative field theoretic point

of view in ref. [18]. Transport coefficients such as the speed of second sound and conduc-

tivities will depend on which direction we decide to look. Such a breaking of rotational

invariance is not unheard of in real world materials. To pick a particularly simple example,

a ferromagnet will break rotational symmetry when the spins align. Ref. [9] emphasized

a possible connection of this SU(2) model to a p-wave superconductor, where the order

parameter for the phase transition is a vector.

Of the real world materials that we considered, superfluid liquid helium-3 perhaps

comes closest in approximating the physics of our model. Liquid helium-3 at very low tem-

peratures is a p-wave superfluid. Two fermionic helium-3 atoms pair up to form a loosely

bound bosonic molecule with weak interaction between the orbital and spin degrees of free-

dom of the electrons [19]. The orbital and spin angular momenta are both equal to one,

and the order parameter is often written Aai where a indexes the spin angular momentum

and i the orbital angular momentum, in surprisingly close analogy with our ja
µ. There are

many stable phases of superfluid helium-3, depending on the pressure, temperature, and

applied magnetic field. The A phases are known to break rotational symmetry.

Despite plausible similarities between the symmetries of our model and various real

world materials, there is one crucial difference. While the order parameters for these

real world materials may have vector or tensor structure, they are not currents, and the

– 3 –
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signature of the phase transition is not the production of a persistent current. In contrast,

our model has 〈jx
1 〉 6= 0.

We begin in section 2 with a discussion of the SU(2) model and the probe limit. We

choose to work in a limit in which gravity is weak and the non-abelian field does not back

react on the metric. Thus, at heart, in this paper we will be solving the classical SU(2)

non-abelian Yang-Mills equations in a fixed background spacetime, that of a Schwarzschild

black hole in AdS5.
4

In section 3, we find a solution to the Yang-Mills equations near the phase transition.

This power series solution in the order parameter and superfluid velocities allows us to

demonstrate that the phase transition is second order and to calculate the speed of second

sound from thermodynamic identities.

In section 4, we make some formal remarks about the current-current correlation func-

tions for our model. We discuss the Ward identities that these Green’s functions satisfy

and some of their discrete symmetries. We also review how to calculate these two-point

functions using the AdS/CFT correspondence.

In section 5, through a study of fluctuations about our solution near the phase transi-

tion, we extract the current-current correlation functions in the hydrodynamic limit. From

the location of the poles, we independently confirm the speed of second sound calculated in

section 3. We are also able to calculate various damping coefficients and see explicitly that

the Green’s functions satisfy the non-abelian Ward identities. In the last part of section 5,

we consider the ω → 0 and k → 0 limits. From these limits we extract conductivities and

also demonstrate that the system obeys a type of London equation.

2 The model

Consider the following gravitational action for a non-abelian gauge field F a
AB with a cos-

mological constant Λ:

S =
1

2κ2

∫

dd+1x
√−g (R − 2Λ) − 1

4g2

∫

dd+1x
√−g F a

ABF aAB . (2.1)

Our gauge field can be re-expressed in terms of a connection Aa
B as follows:

F a
AB = ∂AAa

B − ∂BAa
A + fa

bcA
b
AAc

B , (2.2)

where fa
bc are the structure constants for our Lie algebra g with generators Ta such that

[Ta, Tb] = ifab
cTc. We will take g = su(2) where Ta = σa/2, σa are the Pauli spin matrices,

and the structure constants are fabc = ǫabc.
5

4Attempts to solve the full set of coupled equations for a non-abelian black hole go back many years [20,

21]. See refs. [22, 23] for reviews.
5The g = su(2) indices a, b, c, . . . are raised and lowered with the Kronecker delta δa

b . The capital indices

A, B, C . . . are raised and lowered with the five dimensional space time metric gAB. We will also shortly

introduce Greek indices µ, ν, . . . which will be raised and lowered with the four dimensional Minkowski

tensor ηµν = (−+++).
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The equations of motion for the gauge field that follow from this action (2.1) are

DAF aAB = 0 which can be expanded as

∇AF aAB + fa
bcA

b
AF cAB = 0 . (2.3)

Einstein’s equations can be written

RAB +

(

Λ − 1

2
R

)

gAB =
κ2

2g2

(

2F a
CAF aC

B − 1

2
F a

CDF aCDgAB

)

. (2.4)

A solution to these equations in the case of a negative cosmological constant, Λ =

−d(d−1)/2, is a d+1-dimensional Reissner-Nordström black hole with anti-de Sitter space

asymptotics.6 The only non-zero component of the vector potential can be taken to be7

A3
t = µ + ρ̃ud−2 . (2.5)

Thus we are using only a U(1) subgroup of the full SU(2) gauge symmetry; this black hole

solution requires only an abelian gauge symmetry. The line element for this black hole

solution has the form

ds2 =
1

u2

[

−f(u)dt2 + d~x2 +
du2

f(u)

]

(2.6)

where d~x2 = dx2 + dy2 + dz2 and the warp factor is

f(u) = 1 + Q2

(

u

uh

)2d−2

− (1 + Q2)

(

u

uh

)d

, (2.7)

with the charge Q being defined as

Q2 ≡ κ2

g2

d − 2

d − 1
ρ̃2u2d−2

h . (2.8)

The horizon is located at u = uh, and the Hawking temperature is

TH =
d − (d − 2)Q2

4πuh
. (2.9)

One subtle issue to be addressed is the boundary conditions for A3
t at the horizon

u = uh and at the boundary u = 0 of our asymptotically AdS space. At the horizon of

the black hole, we must work in a local coordinate patch for the gauge potential such that

A3
t has a well defined norm, |A2

t g
tt| < ∞. Given the form of gtt, we actually require that

At(uh) = 0. Our gauge potential (2.5) is well defined globally, at both the horizon and the

boundary, provided

ρ̃ = −µ/ud−2
h . (2.10)

The boundary value of the gauge potential, A3
t (0) = µ, is interpreted via the AdS/CFT

dictionary as a chemical potential in the dual field theory. As such, µ is an external

parameter of the field theory, and we should restrict our class of gauge transformations

6We set the radius of curvature L = 1.
7The notation ρ̃ is meant to evoke a charge density. The actual charge density ρ = −(d − 2)ρ̃/g2.
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to those which do not affect µ. For example, the class of abelian gauge transformations

A3
t → A3

t + ∂tΛ where Λ = ct is ruled out by this restriction.

Refs. [8–10] made the observation that below a critical temperature (or alternately

above a critical chemical potential), this charged black hole undergoes a second order

phase transition. The component of the gauge field A1
x develops a profile which not only

spontaneously breaks the remaining U(1) of the SU(2) symmetry but also breaks rotational

invariance. These authors considered the case d = 4 and interpreted the dual 2+1 dimen-

sional field theory as a p-wave thin film superconductor. More recently Basu et al. [13]

looked at the d = 5 case where they interpreted the dual 3+1 dimensional field theory as

a pion superfluid.8

In this paper, we shall make two simplifying assumptions. The first is to take the probe

limit, as was done in [9, 10, 13]. In this limit, κ2/g2 → 0 and the gauge field does not back

react on the metric. The metric remains that of an uncharged black hole in anti-de Sitter

space with warp factor

f(u) = 1 −
(

u

uh

)d

. (2.11)

Next, we restrict to the d = 5 case because of the observation made in ref. [13] that the

zero mode inducing the phase transition has an analytic form. Given this form, we are able

to compute analytically many properties of the field theory close to the phase transition

including Green’s functions, conductivities, diffusion constants, and the speed of second

sound. We show explicitly that the phase transition is second order.

3 Critical behavior

We specialize to AdS5 where we can construct an analytic solution to the gauge field

equations of motion close to the phase transition. We give the solution as the first few

terms in a power series in three small parameters: the order parameter ǫ ≡ g2〈jx
1 〉/2

and chemical-potential-like objects we call superfluid velocities, A3
x(u=0) ≡ A3

x = v‖ and

A3
y(u=0) ≡ A3

y = v⊥. Velocity is a bit of a misnomer here as the objects v‖ and v⊥, like the

chemical potential µ, have mass dimension one. The name is motivated by their canonical

conjugacy to the currents jx
3 and jy

3 .

From the AdS/CFT dictionary, the currents 〈jµ
a 〉 and external field strength Aa

µ in the

field theory can be determined from the small u expansion of the bulk gauge field Aa
µ:

Aa
µ = Aa

µ +
1

2
g2〈ja

µ〉u2 + · · · . (3.1)

3.1 The background

We begin with small steps and construct the solution in the limit v⊥ = v‖ = 0. In the

probe approximation, the equations of motion for the gauge field take the form

DtA
3
t =

(A1
x)2

f
A3

t and DxA1
x = −(A3

t )
2

f2
A1

x , (3.2)

8See also [14] for a 3+1 dimensional system with similar symmetries and qualitative behavior but a more

complicated action.
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where we have defined the linear second order differential operators

Dt ≡ ∂2
u − 1

u
∂u and Dx = Dy ≡ ∂2

u +

(

f ′

f
− 1

u

)

∂u . (3.3)

To keep the equations simple in what follows, we choose to put the horizon of the black

hole at uh = 1. To restore units, dimensionful quantities such as the chemical potential µ,

frequencies ω, and wave-vectors k should be replaced with the dimensionless combinations

µuh, ωuh, and kuh, respectively.

As pointed out by ref. [13], when A3
t = 4(1 − u2) there is an analytic solution to the

second equation of (3.2) that is regular at the horizon, of the form

A1
x = ǫ

u2

(1 + u2)2
. (3.4)

From eq. (3.1), the meaning of ǫ in the dual field theory is, up to normalization, that

of an expectation value for the non-abelian current 〈j1
x〉 = 2ǫ/g2. The existence of the

solution (3.4) indicates that the superfluid phase transition occurs when µ = 4.9 Given

this zero mode, we look for a general solution to eqs. (3.2) as a series expansion in ǫ:

A1
x = ǫ

u2

(1 + u2)2
+ ǫ3w1 + ǫ5w2 + O(ǫ7) , (3.5)

A3
t = 4(1 − u2) + ǫ2φ1 + ǫ4φ2 + O(ǫ6) . (3.6)

The solution describes the system for µ & 4. Our strategy will be to fix the expectation

value of 〈j1
x〉 = 2ǫ/g2 but to allow the chemical potential to be corrected order by order:

µ = 4 + ǫ2δµ1 + ǫ4δµ2 + · · · . Thus, in solving the differential equations, we require the

boundary condition that the O(u2) term in wi vanish while φi(0) is allowed to be nonzero.

The differential equation governing φ1 is

Dtφ1 =
4u4

(1 + u2)5
, (3.7)

which has the solution

φ1 = (1 − u2)δµ1 +
1

96

(

5u2 − 8u2(1 + 3u2 + u4)

(1 + u2)3

)

. (3.8)

We applied the boundary condition that φ1 vanish at the horizon. Also, δµ1 corresponds to

a shift of the chemical potential by ǫ2δµ1. The value of δµ1 is constrained by the solution

for w1, as we now see. The differential equation for w1 is

w′′
1 − 1 + 3u4

u(1 − u4)
w′

1 +
16

(1 + u2)2
w1 = − 8u2

(1 − u2)(1 + u2)4
δφ1 . (3.9)

9There are in fact a countable set of such zero modes with µ = 4k where k is a positive integer. We

discuss these higher zero modes in appendix A. As the higher zero modes have higher free energy, they

should not affect the phase diagram of the system.
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We require the boundary conditions that w1 be regular at the horizon and vanish at the

boundary (u = 0). These conditions leave us with the solution

w1 =
cu2

(1 + u2)2
+

u4(39u6 − 331u4 − 819u2 − 369)

20,160(1 + u2)5
+

13u2 ln(1 + u2)

1680(1 + u2)2
, (3.10)

and the constraint

δµ1 =
71

6720
. (3.11)

The term in w1 proportional to c is just the zero mode, and, consistent with our strategy,

we set c = 0.

For the free energy calculation we perform below, we also need the next order correc-

tions, φ2 and w2. The expressions are too cumbersome to repeat here. The structure and

boundary conditions are analogous to the case of φ1 and w1 considered above.

The near boundary expansion of our solution takes the form

A1
x = ǫu2 + O(u4) , (3.12)

A3
t =

(

4 +
71ǫ2

6720
+ δµ2ǫ

4 + O(ǫ6)

)

(3.13)

−
(

4 +
281ǫ2

6720
−
(

1343 − 1365 ln 2

2,822,400
− δµ2

)

ǫ4 + O(ǫ6)

)

u2 + O(u4) ,

where

δµ2 =
13(−4,015,679 + 5,147,520 ln 2)

75,866,112,000
. (3.14)

These expansions match well with numerical solutions that we found close to the transition

temperature.

3.2 Superfluid flow

In this section, we generalize the background above to allow for the possibility of a super-

fluid flow. In terms of the bulk solution, this generalization requires turning on a constant

value of A3
y(u=0) = v⊥ and A3

x(u=0) = v‖ at the boundary corresponding to a non-zero

superfluid velocity (v‖, v⊥, 0). The differential equations describing this background are a

modification of eqs. (3.2):

u2fDλA1
λ = gµν

(

A3
µA3

νA1
λ − A1

µA3
νA3

λ

)

, (3.15)

u2fDλA3
λ = gµν

(

A1
µA1

νA3
λ − A3

µA1
νA1

λ

)

, (3.16)

A1
t ∂uA3

t − A3
t ∂uA1

t = fA1
x∂uA3

x − fA3
x∂uA1

x + fA1
y∂uA3

y − fA3
y∂uA1

y , (3.17)

where we set A2
µ = Aa

z = Aa
u = 0. The repeated covariant λ indices on the left hand side

are not to be summed over. As before, we solve this system in a small ǫ expansion, but

we also add another small expansion parameter δ ∼ v⊥ ∼ v‖. There is a non-uniformity in

the limit v⊥ → 0 and v‖ → 0, and we find two branches of solutions for small values of the

superfluid velocity. In the case where v⊥ > v‖, we find

A1
t = O(ǫ2) , (3.18)

– 8 –
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A1
x = ǫ

u2

(1 + u2)2
− ǫ(v2

⊥ + v2
‖)

u2(u2 + 4 ln(1 + u2))

24(1 + u2)2
+ · · · , (3.19)

A1
y = −ǫ

v‖

v⊥

u2

(1 + u2)2
+ ǫ(v2

‖ + v2
⊥)

v‖

v⊥

u2(u2 + 4 ln(1 + u2))

24(1 + u2)2
+ · · · , (3.20)

A3
t = 4(1 − u2) +

1

3
(v2

‖ + v2
⊥)(1 − u2) (3.21)

+ǫ2
v2
⊥ + v2

‖

v2
⊥

(1 − u2)(71 + 3u2 − 627u4 − 279u6)

6720(1 + u2)3
+ · · · ,

A3
x = v‖ − ǫ2 v‖

v⊥

v2
‖ + v2

⊥

v⊥

u2(3 + 9u2 + 4u4)

144(1 + u2)3
+ · · · , (3.22)

A3
y = v⊥ − ǫ2

v2
‖ + v2

⊥

v⊥

u2(3 + 9u2 + 4u4)

144(1 + u2)3
+ · · · . (3.23)

In the case v⊥ < v‖, we find

A1
t = ǫ

v2
⊥ + v2

‖

v‖

u2(1 − u2)

4(1 + u2)
+ · · · , (3.24)

A1
x = ǫ

u2

(1 + u2)2
+ ǫ(v2

⊥ + v2
‖)

u2(u2 − 2 ln(1 + u2))

24(1 + u2)2
+ · · · , (3.25)

A1
y = ǫ

v⊥
v‖

u2

(1 + u2)2
+ ǫ(v2

⊥ + v2
‖)

v⊥
v‖

u2(u2 − 2 ln(1 + u2))

24(1 + u2)2
+ · · · , (3.26)

A3
t = 4(1 − u2) +

1

6
(v2

‖ + v2
⊥)(1 − u2) (3.27)

+ǫ2
v2
⊥ + v2

‖

v2
‖

(1 − u2)(71 + 3u2 − 627u4 − 279u6)

6720(1 + u2)3
+ · · · ,

A3
x = v‖ − ǫ2

v2
‖ + v2

⊥

v‖

u2(3 + 9u2 − 2u4)

288(1 + u2)3
+ · · · , (3.28)

A3
y = v⊥ − ǫ2 v⊥

v‖

v2
‖ + v2

⊥

v‖

u2(3 + 9u2 − 2u4)

288(1 + u2)3
+ · · · . (3.29)

These solutions can be used to compute the speed of second sound perpendicular and

parallel to the order parameter A1
x. In a two component fluid, there are typically two

propagating collective modes, ordinary and second sound. In our probe approximation, we

see only the superfluid component, and the single collective motion available to us we call

second sound. From our holographic perspective, ordinary sound would involve fluctuations

of the metric so it is suppressed in the limit κ2/g2 → 0.

The speed of second sound, like that of ordinary sound, can be computed from deriva-

tives of the state variables. From ref. [11], the second sound speed squared in this probe

limit should be

c2
2 = − ∂j/∂v

∂ρ/∂µ

∣

∣

∣

∣

v=0

. (3.30)

From eq. (3.1), the values of the charge current j = 〈jx
i 〉 and the charge density ρ = 〈jt

3〉
can be read off from the order u2 pieces of A3

i and A3
t , respectively.
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Because our system is not rotationally symmetric, the speed of second sound will

depend on the direction of propagation. Let c⊥ and c‖ be the speeds perpendicular and

parallel to the order parameter A1
x, respectively. The speed c⊥ can be computed from the

background solution v⊥ > v‖ while v‖ can be computed from the solution with v‖ > v⊥. In

the case v⊥ > v‖ = 0, we find that

A3
t = µ +

1

71
(840 − 281µ)u2 + · · · , (3.31)

A3
y = v⊥ − 140

71
v⊥(µ − 4)u2 + · · · (3.32)

and hence, up to higher order corrections in ǫ,

c2
⊥ ≈ 71

13,488
ǫ2 ≈ 140

281
(µ − 4) . (3.33)

(We used the fact that µ − 4 ≈ 71ǫ2/6720, which can be read off from (3.13).) In the case

v‖ > v⊥ = 0, at leading order A3
t remains the same but now we need

A3
x = v‖ −

70

71
v‖(µ − 4)u2 + · · · . (3.34)

We find that

c2
‖ ≈

1

2

71

13,488
ǫ2 ≈ 70

281
(µ − 4) . (3.35)

We confirm these results for c‖ and c⊥ in sections 5.2 and 5.3 through an analysis of the

hydrodynamic poles in the current-current correlation functions. For numerical results

valid when ǫ is not necessarily small, see figure 2.

These perturbative solutions in v⊥ and v‖ can also be used to analyze the phase diagram

of the system near the critical point µc = 4. At the critical point, we expect the order

parameter to vanish, so ǫ = 0. The value of A3
t at u = 0 can be reinterpreted as the value of

the chemical potential. These two facts give us a relation between the chemical potential

and superfluid velocity along the critical line separating the two phases. For superfluid

flow parallel to the order parameter, we expect

µ ≈ 4 +
1

6
v2
‖ (3.36)

while for flow perpendicular to the order parameter, we have instead

µ ≈ 4 +
1

3
v2
⊥ . (3.37)

3.3 The free energy

We compute the contribution to the free energy from the gauge field term in the on-shell

action:

S = − 1

4g2

∫

d5x
√−gF a

ABF aAB

=
βVol3
2g2

∫ 1

0

du

u

(

(∂uA3
t )

2 − f(u)(∂uA1
x)2 +

1

f(u)
(A1

xA3
t )

2

)

= −βVol3
2g2

(
∫ 1

0

du

u
f(u)(∂uA1

x)2 +
1

u
A3

t (∂uA3
t )

∣

∣

∣

∣

u=0

)

.

(3.38)

– 10 –



J
H
E
P
0
4
(
2
0
0
9
)
1
2
6

For a background where A1
x = 0 and

A3
t = (4 + δµ1ǫ

2 + δµ2ǫ
4)(1 − u2) , (3.39)

the on-shell action is

Svac =
βVol3
4g2

(

64 +
71

210
ǫ2 +

(

− 51,145,217

2,370,816,000
+

4979

176,400
ln 2

)

ǫ4 + O(ǫ6)

)

. (3.40)

Here Vol3 is the spatial volume of the field theory while β = 1/T is the inverse temperature.

For the background where A1
x 6= 0 has condensed, we find in contrast that

Ssf =
βVol3
4g2

(

64 +
71

210
ǫ2 +

(

− 48,014,117

2,370,816,000
+

4979

176,400
ln 2

)

ǫ4 + O(ǫ6)

)

. (3.41)

The difference in the values of the two on-shell actions is

β∆P = Svac − Ssf =
βVol3
4g2

(

− 71

53,760
ǫ4 + O(ǫ6)

)

. (3.42)

Now ∆P can be interpreted also as a difference in the free energies because the free energy

(in the grand canonical ensemble) is minus the value of the on-shell action. That ∆P < 0

implies that the free energy of the superfluid phase is smaller and thus the superfluid is sta-

ble.

Moreover, from the fact that the free energy difference scales as ǫ4, we see that the

phase transition is second order. For small ǫ, ǫ4 ∼ (µ − µc)
2. If we restore dimensions,

then µ should be replaced by µuh = µ/πT . Thus, ǫ4 ∼ (Tc −T )2. The derivative of P with

respect to temperature is continuous but non-differentiable.

4 Formal remarks about Green’s functions

A field theory with a non-abelian global symmetry, such as SU(2), has by Noether’s The-

orem, a conserved current jµ
a which transforms under the adjoint representation of this

symmetry group. In this paper, we are interested in Green’s functions for this current, in

particular the Fourier transformed retarded current-current correlation functions:

Gµν
ab (p) = i

∫

d4x e−ip·x〈[jµ
a (x), jν

b (0)]〉θ(t) . (4.1)

If the symmetry is non-anomalous, then we can weakly gauge it by coupling the current to

an external gauge field Aa
µ. Gauge invariance then implies that the correlation functions

obey a series of Ward identities. For the one-point function, the covariant derivative of the

current vanishes:

0 =
(

∂µδc
a + fab

cAb
µ

)

〈jµ
c 〉 . (4.2)

More usefully for the present discussion, there is also a Ward identity for the retarded

two-point function. We give here the Fourier transformed version:

0 = (ipµδc
a + fab

cAb
µ)Gµν

cd (p) + fad
c〈jν

c 〉 . (4.3)
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For our gravitational system beyond the phase transition, the gravitational bulk values

of both A3
t and A1

x are non-zero. The AdS/CFT dictionary allows us to read Aa
µ and 〈jµ

a 〉
from the near boundary expansion of Aa

µ using the relation (3.1). For the system under

consideration here, of the components of the external gauge field only A3
t = µ is non-zero

in the field theory. We have two non-vanishing components of the current, 〈jx
1 〉 and 〈jt

3〉.
Below, we compute the Green’s functions that describe the response of the system to

an external gauge field in the third isospin direction: Gµν
a3 . The relevant Ward identities

componentwise are

0 = ipµGµν
3a − 〈jx

1 〉δa2δ
νx , (4.4)

0 = ipµGµν
23 + µGtν

13 + 〈jx
1 〉δxν , (4.5)

0 = ipµGµν
13 − µGtν

23 . (4.6)

Our Green’s functions below obey this set of Ward identities.

Another important observation for the Green’s functions under consideration is the

symmetry under swapping the indices. We observe that

Gµν
ab (p) = (−1)φ(a,b)Gνµ

ba (p) , (4.7)

where φ(a, b) is equal to −1 if either a = 2 or b = 2, but not both, and 1 otherwise. This

symmetry follows from the discrete symmetries of the system. Given that our currents

are even under PT, i.e. parity and time reversal, if PT were a symmetry of the state, we

would expect the Green’s functions to be symmetric under an index swap. Our state is not

symmetric under PT, but it is symmetric under PT times a Z2 operation on the su(2) Lie

algebra, σ1 → −σ1 and σ3 → −σ3.

4.1 Computation of two-point functions

To compute the current-current correlators (4.1) in the probe approximation, we perturb

the background gauge field by sending

Aa
A → Aa

A + δAa
A . (4.8)

Consequently, the corresponding field strength F a
AB changes to F a

AB + fa
AB, with fa

AB

given by

fa
AB = ∂AδAB − ∂BδAA + ǫabcδAb

AAc
B + ǫabcAb

AδAc
B . (4.9)

From (2.1), one can see that the quadratic action for δAa
A is

S2 = − 1

4g2

∫

d5x
√−gfa

ABfABa , (4.10)

which gives the linearized equations of motion

∇Afa
AB + ǫabcAAbf c

AB + ǫabcδAAbF c
AB = 0 . (4.11)

The quadratic action (4.10) is in fact not well defined because the integrand diverges as

ln u at small u as we will see. We will regulate this divergence using holographic renormal-

ization [24].
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For definiteness, we will only analyze the case where the background gauge field doesn’t

depend on t or ~x and where its radial components Aa
u vanish. We choose a similar gauge

for the perturbations by requiring δAa
u = 0. Equations (4.11) can be solved approximately

in the limit of small u. An appropriate series expansion in this limit is

δAa
µ(t, ~x, u) = αa

µ(t, ~x) + α̃a
µ(t, ~x)u2 ln u + βa

µ(t, ~x)u2 + · · · . (4.12)

for some vector-valued functions α(t, ~x), α̃(t, ~x), β(t, ~x), etc. The values of α and β are

the only ones that can be specified independently; all the other functions appearing in this

expansion, namely α̃ and higher order corrections, can be expressed in terms of α and β.

Plugging (4.12) into (4.11) and looking at the term with the lowest power of u in the

equation with B = ν, one finds a relation between α̃a
ν and αa

ν :

α̃a
ν = −1

2

[

∂µfa
µν + ǫabcAµbf c

µν + ǫabcδAµbF c
µν

]

∣

∣

∣

∣

u=0

. (4.13)

Upon integration by parts in (4.10), the unregularized on-shell quadratic action can

be written as

Son−shell
2 =

1

2g2

∫

d4x
1

u
(δAνa)(∂uδAa

ν)

∣

∣

∣

∣

u=1/Λ

. (4.14)

The divergence that arises as one takes Λ → ∞ comes from the ∂uδAa
ν term whose most

divergent piece goes like u ln u at small u. This divergence can be regulated by adding the

counterterm

Sct = − lnΛ

2g2

∫

d4x δAνa
[

∂µfa
µν + ǫabcAµbf c

µν + ǫabcδAµbF c
µν

]

∣

∣

∣

∣

u=1/Λ

. (4.15)

Note that this counterterm depends only on the values of the gauge field on the surface u =

1/Λ and on its derivatives along this surface, as required by holographic renormalization.

As a side note, a simpler formula for α̃a
ν can be found if only A3

t and α3
ν approach

non-zero values at the boundary of AdS. In this case, only α̃3
ν is non-zero and is given by

α̃3
ν = −1

2

(

∂µ∂µαa
ν − ∂µ∂ναa

µ

)

. (4.16)

Assuming that αa
ν(t, ~x) = αa

νe
−i(ωt−~p·~x) then

α̃3
ν =

1

2
(~p2 − ω2)α3

ν − 1

2
pν

(

ωα3
t + pxα3

x + pyα
3
y + pzα

3
z

)

. (4.17)

To compute the Fourier transformed two-point function, we first Fourier transform the

regulated on-shell action

Son−shell
2 =

1

g2

∫

d4p

(2π)4
αµ

a(−p)(βa
µ(p) + cα̃a

µ(p)) , (4.18)

where c is an arbitrary constant introduced by the regularization procedure. Although such

an action is not a generating functional for the retarded Green’s function, using the proce-

dure outlined by Son and Starinets [25], we can identify the retarded Green’s function as10

Gaν
µb(p) =

2

g2

∂
[

βa
µ(p) + cα̃a

µ(p)
]

∂αb
ν(p)

. (4.19)

10For a more precise discussion of how to derive these Green’s functions from an action principle and

generating functional, see ref. [26]. See also ref. [27] and the discussion in appendix C of ref. [28].
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The linear response of a system to a perturbation αb
ν(p) is then a current density of the form

〈ja
µ(p)〉 = Gaν

µb(p)αb
ν(p) . (4.20)

For most physical questions, the ambiguity in the choice of c should be irrelevant. More

precisely, one can see from (4.13) that schematically α̃ = ∂∂α + ∂α + α, so Gaν
µb(p) is am-

biguous up to an additive term analytic in p. Its Fourier transform Gaν
µb(x) is ambiguous

up to an additive term of the from c1δ
4(x) + cλ

2∂λδ4(x) + cλρ
3 ∂λ∂ρδ

4(x), where c1, cλ
2 , and

cλρ
3 are constants that depend on the particular Green’s function we are computing. Since

in position space equation (4.20) reads

〈jµ
a (x)〉 =

∫

d4x′ Gµν
ab (x − x′)αb

ν(x
′) , (4.21)

it follows that the ambiguity in the choice of c does not affect the result of 〈jµ
a (x)〉 if

αb
ν(x) = 0. In particular, the late-time, large-distance response of the system to localized

sources is not affected by this ambiguity. There are many subtleties in these calculations.

5 Fluctuations

To calculate the Fourier transformed retarded current-current correlation functions, we

need to study fluctuations of the SU(2) gauge fields Aa
µ(x) in our black hole background.

In the superfluid phase, the expectation value of the order parameter A1
x 6= 0 breaks

rotational symmetry and makes our task richer and more complicated than in the rotation-

ally symmetric case where only A3
t 6= 0. In the rotationally symmetric case, it would be

enough to consider a fluctuation with a time and space dependence of the form e−iωt+ikx.

Given the breaking of rotational symmetry, we should in principle consider a more general

dependence where we allow for motion both parallel and transverse to the order parame-

ter: e−iωt+ikxx+ikyy. Because of the complexity of the full result, we shall not present a full

accounting of all the Green’s functions here. Instead we will content ourselves by studying

various informative limits where either kx = 0 or ky = 0.

We make a few other additional simplifying restrictions. Following in the footsteps

of refs. [9, 10] where the third isospin direction was interpreted as the U(1) of electricity

and magnetism, we will consider Green’s functions where at least one of the SU(2) isospin

indices is equal to three. In other words, we are interested in the linear response of the

system to external electric and magnetic fields.

The last simplifying restriction is to limit our study to the hydrodynamic regime,

where the order parameter, the frequency, and the wave-vector are small compared to

the temperature. In our dimensionless notation, ǫ, k, ω ≪ 1. It is only in this limit that

we have analytic results although it is straightforward to calculate the Green’s functions

numerically beyond this regime.

We work out the Green’s functions in five cases. The first and simplest case, for which

we give the most detailed description of the calculation, is for a fluctuation transverse to

the order parameter and a wave vector transverse to both the order parameter and the

polarization of the fluctuation. We call this fluctuation the pure transverse mode. We next
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consider fluctuations that correspond to a second sound mode in two different limits, one

where the sound is propagating parallel to the order parameter and one where the sound

is propagating transverse. These two sets of fluctuations give us independent confirmation

of the speeds of second sound computed in section 3.2 from thermodynamics. Finally we

consider fluctuations that correspond to a diffusive mode, again in two different limits,

one where the diffusion is parallel to the order parameter, one in which the diffusion is

transverse. (In appendix B, we attempt to give a picture of the general case and how

the different limits of these Green’s functions fit together.) In section 5.6, we discuss

conductivities and the London equations.

In what follows, to avoid cumbersome indices, we define new variables for the back-

ground values of the gauge field:

A1
x ≡ W and A3

t ≡ Φ . (5.1)

5.1 Pure transverse mode

The pure transverse mode is described by fluctuations of the field A3
y with only z spatial

dependence. We decompose the fluctuations into Fourier modes:

δA3
y(u, t, z) = ay(u)e−iωt+ikz . (5.2)

These modes transverse to the order parameter A1
x decouple from the other fluctuations of

the gauge field and are governed by the differential equation:

Dyay =
(k2 + W 2)f − ω2

f2
ay , (5.3)

where Dy was defined in eq. (3.3).

Near the horizon u = 1, we find that ay ∼ (1 − u)±iω/4 satisfies either ingoing or

outgoing plane wave type boundary conditions. Consistent with the presence of an event

horizon, it is natural to choose ingoing boundary conditions (the minus sign in the expo-

nent). This choice leads to retarded, as opposed to advanced, Green’s functions in the

dual field theory [25]. At the boundary u = 0 of AdS, we would like the freedom to set

ay(0) = ay0 to some arbitrary value of our choosing, corresponding to perturbing the dual

field theory by a small external field strength. These two boundary conditions along with

the differential equation uniquely specify the functional form of ay.

While an analytic solution to eq. (5.3) does not appear to be available, one can easily

solve this equation in the limit of small ω, k, and ǫ. We can write the solution for ay, valid

to order ǫ2k, ǫ2ω, k2, and ω2, in the form

ay = ay0

(

1 − u2

1 + u2

)−iω/4
(

1 + ǫ2ayǫ + ǫ2ωayωǫ + k2ayk + ω2ayω + · · ·
)

. (5.4)

We find

ayǫ = −u2(3 + 9u2 + 4u4)

144(1 + u2)3
, (5.5)
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ayωǫ = − iu2(12 + 27u2 + 13u4)

864(1 + u2)3
, (5.6)

ayk =
1

8

(

2 ln(u) ln

(

1 + u2

1 − u2

)

+ Li2(−u2) − Li2(u
2)

)

. (5.7)

The expression for ayω is too cumbersome to give here. Near the boundary, this solu-

tion (5.4) has the expansion

ay = ay0 + ay0

(

iω

2
− ǫ2

48
− iωǫ2

72
− ω2 ln 2

4
+

1

2
(ω2 − k2)

(

1

2
− ln(u)

))

u2 + · · · (5.8)

From this near boundary expansion and eq. (4.20), we can calculate the two-point function

for the current in the hydrodynamic limit:

Gyy
33(ω, k) =

2

g2

(

iω

2
− ǫ2

48
− iωǫ2

72
− ω2 ln 2

4
+ (ω2 − k2)c

)

+ · · · . (5.9)

Note that the counter-term ambiguity, proportional to an arbitrary constant c, is of the

form predicted in eq. (4.17).

5.2 Transverse sound fluctuations

In general, second sound modes are expected to produce poles in the density-density cor-

relation function. We thus need to consider fluctuations in the conjugate field A3
t . If we

consider sound modes moving transverse to the order parameter, we can take the fluctua-

tions to have a y dependence but no x dependence. The self-consistent set of fluctuations

to consider that couple to δA3
t (u, t, y) are

δA3
t (u, t, y) = a3

t (u)e−iωt+iky ,

δA3
y(u, t, y) = a3

y(u)e−iωt+iky , (5.10)

δAa
x(u, t, y) = aa

x(u)e−iωt+iky ,

where a = 1, 2.

The four fluctuations satisfy four second order ordinary differential equations and one

first order constraint:

Dxa1
x =

(−ω2 − Φ2 + k2f

f2

)

a1
x +

2Φ(iωΦa2
x − Wa3

t )

f2
, (5.11)

Dxa2
x =

(−ω2 − Φ2 + k2f

f2

)

a2
x −

2iωΦa1
x − iW (ωa3

t + kfa3
y)

f2
, (5.12)

Dya
3
y =

−ω2 + W 2f

f2
a3

y −
kω

f2
a3

t +
ikW

f
a2

x , (5.13)

Dta
3
t = −k2 + W 2

f
a3

t +
ωk

f
a3

x +
2WΦ

f
a1

x − iω

f
a2

x , (5.14)

0 =
iω

f
∂ua3

t + ik∂ua3
y + W∂ua2

x − (∂uW )a2
x , (5.15)

where Dt, Dx, and Dy were defined in eq. (3.3). We checked that the derivative of the

constraint equation (5.15) with respect to u is a linear combination of all five differential
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equations (5.11)–(5.15). Thus if a solution of the first four differential equations satisfies

the constraint for some u, it will satisfy the constraint equation at all u.

There are seven integration constants associated with this linear system (5.11)–(5.15).

If we look at the horizon of the black hole at u = 1, we find seven different kinds of be-

havior. There exist six solutions that have plane wave behavior for a1
x, a2

x, and a3
y near the

horizon of the form

(1 − u)±iω/4 . (5.16)

There is also a pure gauge solution,

a3
t = −iω , a3

x = ik , a2
x = −W . (5.17)

As in the pure transverse case, we choose pure ingoing boundary conditions corresponding

to (1 − u)−iω/4 behavior. At the boundary u = 0 of our asymptotically AdS space, we

would like to be able to perturb the system with arbitrary boundary values of a3
t and a3

y

but set the “unphysical” components of the gauge field a1
x and a2

x to zero. These are four

constraints and we have only three ingoing solutions. Thus we will also need to make use

of the pure gauge solution to enforce our u = 0 boundary conditions.

We solved the system perturbatively in ω, k, and ǫ. We present the results here in

the limit where ω ∼ k2 ∼ ǫ2. The near boundary expansion (u = 0) of the solution

takes the form

a1
x = −(at0k + ay0ω)

P 70kǫ
(

48k2 + 3ǫ2 − 248iω
)

u2 + · · · , (5.18)

a2
x = −at0k + ay0ω

P
iωǫ

k

(

21,840k2 + 843ǫ2 − 72,800iω
)

u2 + ay0
iǫ

k
u2 + · · · , (5.19)

a3
y = ay0 −

(at0k + ay0ω)

P ω

(

1120k4 + 3k2(117ǫ2 − 1120iω) (5.20)

+
1

48
(ǫ2 − 24iω)(843ǫ2 − 72,800iω)

)

u2 + · · · ,

a3
t = at0 +

(at0k + ay0ω)

P k

(

1120k4 + 3k2(117ǫ2 − 1120iω) (5.21)

+
1

48
(ǫ2 − 24iω)(843ǫ2 − 72,800iω)

)

u2 + · · · .

Note, the expression (at0k + ay0ω) is not homogeneous in our scaling limit. We have in-

cluded the leading corrections proportional to at0 and ay0. There are terms in the expansion

proportional to u2 ln u but they are subleading in ω, k, and ǫ.

The pole in this limit takes the form

P = −72,800iω3 +
(

43,120k2 + 843ǫ2
)

ω2 +
7i

6
(4800k4 + 553k2ǫ2)ω +

−71k2ǫ4

16
− 141k4ǫ2 − 1120k6 + · · · . (5.22)

Let us study this cubic polynomial in ω in two different limits. First, if k ≪ ǫ, we find

three poles with the asymptotic form

ω = ±
√

71

13,488
ǫk − 147,217ik2

947,532
+ · · · , (5.23)
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ω = − 843iǫ2

72,800
− 4,335,443ik2

15,397,395
+ · · · . (5.24)

The first two poles are propagating modes that we identify with second sound. Indeed, the

speed of second sound agrees with the earlier result (3.33) from section 3.2. The position

of the third pole in this limit is determined mostly by the size of the order parameter ǫ and

so we associate it with the zero mode that causes the phase transition from the superfluid

phase back to the normal phase.

In the opposite limit, k ≫ ǫ, where the order parameter is small, the behavior should

be close to that of the normal fluid. In this limit, we find

ω =

(±11 − 3i

65

)

k2 +

(±260,803 − 131,519i

26,644,800

)

ǫ2 + · · · (5.25)

ω = − ik2

2
− 5iǫ2

2928
+ · · · . (5.26)

The first two poles are associated with the zero modes that cause the phase transition from

the normal phase to the superfluid phase and were discussed in ref. [9] while the third pole

is associated to the diffusive mode of our conserved charge density. Indeed, the location of

this diffusive pole is determined by the dynamics of the normal phase and was calculated,

without the order ǫ2 correction, long ago in ref. [29]. As we vary ǫ and k the number of

poles cannot change. The two zero mode poles evolve into the sound poles of the previous

limit while the diffusive pole becomes the zero mode pole of the previous limit.

From these small u expansions, we can read off the eight Green’s functions Gxt
13, Gxy

13 ,

Gxt
23, Gxy

23 , Gyy
33 , Gyt

33, Gty
33, and Gtt

33. From the discrete symmetries (4.7), we can also read

off four more Green’s functions with the indices swapped. Note the prefactor at0k + ay0ω

in the small u expansion. This structure is necessary to satisfy the Ward identities (4.4).

As a further check, we consider a particular static limit of the density-density correla-

tion function. From eqs. (4.20) and (5.21), we can read off the Green’s function,

Gtt
33 =− 2

g2

k2

P

(

1120k4+3k2(117ǫ2−1120iω)+
1

48
(ǫ2−24iω)(843ǫ2−72,800iω)

)

. (5.27)

We are interested in the long wave-length limit of this Green’s function:

lim
k→0

Gtt
33(0, k) =

2

g2

281

71
. (5.28)

This long wave-length limit is equal to a thermodynamic susceptibility,

lim
k→0

Gtt
33(0, k) =

∂2P

∂µ2
=

∂ρ

∂µ
. (5.29)

Given this relation, we see that eq. (3.31) agrees with eq. (5.28).

5.3 Longitudinal sound fluctuations

Longitudinal sound modes correspond to the case where the fluctuations in A3
t depend only

on x. A self-consistent set of perturbations in this case is given by

δAa
t (u, t, x) = aa

t (u)e−iωt+ikx ,
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δAb
x(u, t, x) = ab

x(u)e−iωt+ikx , (5.30)

where a, b = 1, 2, 3. These fields satisfy the following six second order equations and three

constraints:

Dta
1
t =

1

f

(

−WΦa3
x − ikΦa2

x + kωa1
x + k2a1

t

)

, (5.31)

Dta
2
t =

1

f

(

2ikWa3
t +

(

k2 + W 2
)

a2
t + iWωa3

x + kωa2
x + ikΦa1

x

)

, (5.32)

Dta
3
t =

1

f

((

k2 + W 2
)

a3
t − 2ikWa2

t + kωa3
x − iWωa2

x + 2WΦa1
x

)

, (5.33)

Dxa1
x =

1

f2

(

−2WΦa3
t + ikΦa2

t − kωa1
t + 2iΦωa2

x −
(

Φ2 + ω2
)

a1
x

)

, (5.34)

Dxa2
x =

1

f2

(

−iWωa3
t − kωa2

t − ikΦa1
t −

(

Φ2 + ω2
)

a2
x − 2iΦωa1

x

)

, (5.35)

Dxa3
x =

1

f2

(

−kωa3
t + iWωa2

t + WΦa1
t − ω2a3

x

)

, (5.36)

0 = −Φ′a2
t + iω∂ua1

t + Φ∂ua2
t + ifk∂ua1

x , (5.37)

0 = fW ′a3
x + Φ′a1

t − Φ∂ua1
t + iω∂ua2

t + ifk∂ua2
x − fW∂ua3

x , (5.38)

0 = −fW ′a2
x + iω∂ua3

t + fW∂ua2
x + ifk∂ua3

x , (5.39)

with Dt and Dx as defined in (3.3). Again, the three constraint equations are consistent

with the second order equations in the sense that if they hold at some u, they hold at all u.

The system (5.31)–(5.39) has nine integration constants. The nine possible behaviors

at the horizon are of two types: six plane wave solutions for a1
x, a2

x, and a3
x that behave as

(1 − u)±iω/4 (5.40)

close to u = 1, and three pure gauge solutions given by

a1
t = −iωα1 − Φα2 , a2

t = −iωα2 + Φα1 , a3
t = −iωα3 ,

a1
x = ikα1 , a2

x = ikα2 − Wα3 , a3
x = Wα2 + ikα3 , (5.41)

where αa are arbitrary constants. As in the previous sections, we require no outgoing

modes at the horizon, which amounts to specifying three of the nine integration constants.

The other six integration constants are specified in terms of the values of the fields at u = 0.

In order to examine fluctuations in a3
t and a3

x, we set their boundary values to at0 and ax0,

respectively, and the boundary values of the other four fields to zero.

Solving the system (5.31)–(5.39) perturbatively in ω, k, and ǫ under the scaling as-

sumption ω ∼ k2 ∼ ǫ2, we find that the boundary behavior of the fluctuations is

a1
t =

at0k + ax0ω

P
ǫω

4
(20,160k2 + 843ǫ2 − 72,800iω)u2 + · · · , (5.42)

a2
t =

at0k + ax0ω

P
35k2ǫ

4
(48ik2 + 3iǫ2 + 320ω)u2 + · · · , (5.43)

a1
x = −at0k + ax0ω

P 35kǫ(48k2 + 3ǫ2 − 320iω)u2 + · · · , (5.44)
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a2
x = −at0k + ax0ω

P
iǫω

k

(

20,160k2 + 843ǫ2 − 72,800iω
)

u2 + ax0
iǫ

k
u2 + · · · , (5.45)

a3
t = at0 +

at0k + ax0ω

P
k

96

(

26,880k4 + 843ǫ4 + 192k2(79ǫ2 − 840iω) + (5.46)

−113,264iǫ2ω − 3,494,400ω2
)

u2 + · · · ,

a3
x = ax0 −

at0k + ax0ω

P
ω

96

(

26,880k4 + 843ǫ4 + 192k2(79ǫ2 − 840iω) (5.47)

−113,264iǫ2ω − 3,494,400ω2
)

u2 + · · · .

The pole here is again a cubic polynomial in ω:

P = −72,800iω3 + (39,760k2 + 843ǫ2)ω2 +
5

6
i(2688k4 + 451k2ǫ2)ω

−71

32
k2ǫ4 − 53k4ǫ2 − 280k6 . (5.48)

We consider the roots of the polynomial first in the limit k ≪ ǫ:

ω = ±
√

1

2

71

13,488
ǫk − 103,535

947,532
ik2 + · · · , (5.49)

ω = − 843

72,800
iǫ2 − 5,044,459

15,397,395
ik2 + · · · . (5.50)

The first pair of poles correspond to second sound propagating in the direction parallel to

the order parameter with a speed consistent with our earlier result (3.35). The third pole

is related to the zero mode that causes a phase transition from the superfluid to the normal

phase. Next we consider the limit k ≫ ǫ:

ω =
±11 − 3i

130
k2 +

±192,553 − 95,119i

26,644,800
ǫ2 , (5.51)

ω = − ik2

2
− 13iǫ2

2928
+ · · · . (5.52)

The two sound poles have evolved into the zero mode poles, while the zero mode pole has

evolved into a diffusive pole.

From the small u expansion, we can read off a large number of Green’s functions

which we shall not bother to list. Similar to the transverse sound case considered above,

the prefactor (at0k + ax0ω) in the expansion means that the Ward identities (4.4) will

be satisfied. However, there is more structure here. Note that ika2
x = 4a1

t − ax0ǫu
2 and

ika1
x = −4a2

t . In our hydrodynamic limit at leading order in ω and k, these two equations

are the Ward identities (4.5) and (4.6), respectively.

Before moving on, we note that

lim
k→0

Gtt
33(0, k) =

2

g2

281

71
, (5.53)

which agrees with eq. (5.28), but k here is parallel rather than transverse to the order

parameter.
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5.4 Transverse diffusive mode

In addition to the sound mode found above, in the limit k ≪ ǫ, we expect to find a diffusive

mode in the current-current correlator. We begin with the slightly simpler case of a mode

polarized transverse to the order parameter but propagating parallel to it, and follow in the

next section with a mode polarized longitudinal to the order parameter but propagating

transversely. Thus first we look for fluctuations in δAa
y(u, t, x) and any other modes that

couple to it. A self-consistent set of fluctuations to consider is

δAa
y(u, t, x) = aa

y(u)e−iωt+ikx , (5.54)

where a = 1, 2, 3.

This set of fluctuating modes gives rise to the three differential equations at linear order:

Dxa3
y =

(k2 + W 2)f − ω2

f2
a3

y −
2iW

f
a2

y , (5.55)

Dxa2
y =

(k2 + W 2)f − ω2 − Φ2

f2
a2

y +
2iW

f
a3

y −
2iωΦ

f2
a1

y , (5.56)

Dxa1
y =

k2f − ω2 − Φ2

f2
a1

y +
2iωΦ

f2
a2

y . (5.57)

As before, we solve this set of equations perturbatively in the limit ω ∼ k2 ∼ ǫ2. The

small u expansion of the solutions, from which we may read off the Green’s functions, takes

the form:

a1
y =

ay0

P 22kǫωu2 + · · · , (5.58)

a2
y =

ay0

P 2kǫ(2ik2 + 3ω)u2 + · · · , (5.59)

a3
y = ay0 −

ay0

P
1

3360

(

−1680k6 + 12k4(29ǫ2 + 700iω) − 6k2(ǫ4 + 28iǫ2ω − 10,780ω2) +

+ω(9iǫ4 + 4766ǫ2ω − 109,200iω2)
)

u2 +
1

2
ay0k

2u2 ln u + · · · . (5.60)

The poles at leading order in this perturbative expansion come from a quadratic polynomial

in ω:

P = 65ω2 +
3i(140k2 + 3ǫ2)

70
ω − (70k2 + 3ǫ2)k2

35
. (5.61)

As before, we consider the roots of this polynomial in two limits. First we consider k ≪ ǫ,

in which case we find

ω = − 9i

4550
ǫ2 +

112i

195
k2 + · · · , (5.62)

ω = −2ik2

3
+ · · · . (5.63)

The first pole is associated with the zero mode that causes the phase transition from the

superfluid phase to the normal phase while the second pole comes from a diffusive mode

of the charge density.
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Next, we consider the limit k ≫ ǫ where we recover the zero modes of the normal phase,

ω =
±11 − 3i

65
k2 +

±33 − 9i

9100
ǫ2 + · · · . (5.64)

At leading order, the location of the pole is the same as that of eq. (5.25). However, the

subleading order ǫ2 corrections are different.

5.5 Longitudinal diffusive mode

We continue the discussion by looking at modes polarized longitudinal to the order pa-

rameter but propagating transversely. We consider fluctuations δA3
x(u, t, y) and all others

coupled to it:

δA3
x(u, t, y) = a3

x(u)e−iωt+iky ,

δAa
t (u, t, y) = aa

t (u)e−iωt+iky , (5.65)

δAb
y(u, t, y) = ab

y(u)e−iωt+iky ,

where a, b = 1, 2. This set of fluctuations obeys the five second order equations and two

first order constraints:

Dta
1
t =

1

f

(

−WΦa3
x − ikΦa2

y + k2a1
t + kωa1

y

)

, (5.66)

Dta
2
t =

1

f

(

iWωa3
x +

(

k2 + W 2
)

a2
t + kωa2

y + ikΦa1
y

)

, (5.67)

Dxa1
y =

1

f2

(

ikΦa2
t + 2iΦωa2

y − kωat −
(

Φ2 + ω2
)

ay

)

, (5.68)

Dxa2
y =

1

f2

(

−ifkWa3
x − kωa2

t +
(

fW 2 − Φ2 − ω2
)

a2
y − ikΦat − 2iΦωay

)

, (5.69)

Dxa3
x =

1

f2

((

fk2 − ω2
)

a3
x + iWωa2

t + ifkWa2
y + WΦa1

t

)

, (5.70)

0 = −Φ′a2
t + iω∂ua1

t + Φ∂ua2
t + ifk∂ua1

y , (5.71)

0 = fW ′a3
x + Φ′a1

t − Φ∂ua1
t + iω∂ua2

t − fW∂ua3
x + ifk∂ua2

y . (5.72)

At the horizon, there are two pure gauge solutions, three ingoing solutions, and three

outgoing solutions. We discard the outgoing solutions and use the remaining degrees of

freedom to choose the boundary values of the five fluctuations. In particular, we set the

boundary values of all the fluctuations to zero save for a3
x, which we set to ax0. The near

boundary expansion of the solution takes the form:

a1
t =

ax0

P
3k2ǫ

4
(k2 − 3iω)u2 + ax0

ǫ

4
u2 + · · · , (5.73)

a2
t =

ax0

P
33ik2ωǫ

4
u2 + · · · , (5.74)

a1
y = −ax0

P 33kǫω u2 + · · · , (5.75)

a2
y = −ax0

P 3ikǫ(k2 − 3iω)u2 + · · · , (5.76)
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a3
x = ax0 +

ax0

P
1

3360

(

840k6 − 16k4(13ǫ2 + 420iω) − ω(ǫ2 − 48iω)(9iǫ2 + 4550ω)

+3k2(ǫ4 + 125iǫ2ω − 39,760ω2)
)

u2 +
1

2
ax0k

2u2 lnu + · · · . (5.77)

The pole, similar to the case considered previously, is a quadratic polynomial in ω:

P = 130ω2 +

(

6ik2 +
9iǫ2

35

)

ω − 3

35
k2ǫ2 − k4 . (5.78)

In the limit k ≪ ǫ we find a zero mode and a diffusive mode:

ω = − 9i

4550
ǫ2 +

56i

195
k2 + · · · , (5.79)

ω = − ik2

3
+ · · · . (5.80)

In the opposite limit, we find two zero modes:

ω =
±11 − 3i

130
k2 +

±33 − 9i

9100
ǫ2 + · · · . (5.81)

The structure of the small u expansion of the gauge fields is again related to the Ward

identities. We see that ika2
y = 4a1

t − ax0ǫu
2 and ika1

y = −4a2
t , which are restatements of

the Ward identities (4.5) and (4.6), respectively.

We have thus far considered the current-current correlation functions in five special

cases. While the results are simpler, our presentation has the disadvantage of obscuring the

relationship between the various cases. We make some remarks about and provide some

results for the general case in appendix B.

5.6 Conductivity and London equations

In this section, we begin by studying the response of the system to a homogeneous, time

dependent electric field, δA3
j ∼ e−iωt, and end with a discussion of the London equations.

A homogeneous electric field should produce a current in the system via Ohm’s Law. To

investigate the conductivity in this long wavelength limit, we set k = 0 for the two-point

functions computed above.

The case of an electric field orthogonal to the order parameter is simple; a current and

nothing more is produced. From the pure transverse mode and eq. (5.9), we have

Gyy
33(ω) =

2

g2

(

− ǫ2

48
+ i

(

1

2
− ǫ2

48

)

ω + c ω2

)

+ · · · . (5.82)

Reassuringly, this result agrees with the k → 0 limit of the Green’s functions associated to

transverse sound propagation and the transverse diffusive mode.

For an electric field parallel to the order parameter, the physics is richer. We find a

current in the x direction but also oscillating (or precessing) charge densities associated

with the one and two isospin directions:

a3
x = ax0 + ax0

(

− ǫ2

96
+ i

(

1

2
+

ǫ2

288

)

ω

)

u2 + · · · , (5.83)
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a1
t = ax0

ǫ

4
u2 + · · · , (5.84)

a2
t = −ax0

iǫω

16
u2 + · · · . (5.85)

This near boundary expansion agrees with the k → 0 limit of the expansions for longitudinal

sound and diffusion considered above. The associated Green’s functions are

Gxx
33 (ω) =

2

g2

(

− ǫ2

96
+ i

(

1

2
+

ǫ2

288

)

ω

)

+ · · · , (5.86)

Gtx
13(ω) = − 2

g2

ǫ

4
+ · · · , (5.87)

Gtx
23(ω) =

2

g2

iǫω

16
+ · · · . (5.88)

Identifying the electric field Ej = iω δAj and recalling Ohm’s Law, the conductivities

are related via eq. (4.20) to the retarded Green’s functions,

σxx(ω) =
Gxx

33 (ω)

iω
and σyy(ω) =

Gyy
33(ω)

iω
. (5.89)

The terms proportional to ǫ2 in Gxx
33 and Gyy

33 thus produce a pole in the imaginary part of

the respective conductivities. As discussed in refs. [2, 30], by the Kramers-Kronig relations

(or by properly regularizing the pole) there must be a delta function in the real part of

the conductivity, indicating the material loses all resistance to DC currents and suggesting

the phase transition is to a superconducting state. While in refs. [2, 30], the pole was seen

only numerically, here we can calculate the strength of the pole analytically close the phase

transition. Its residue is given by

Resω=0σxx =
2

g2

iǫ2

96
+ · · · Resω=0σyy =

2

g2

iǫ2

48
+ · · · . (5.90)

In figure 1 we show a comparison between numerical computations of the residues of the

poles at ω = 0 in σxx and σyy, along with the analytic approximation (5.90) close to T = Tc.

In the Drude model for an ideal metal, the conductivity takes the form σ = iρ/mω

where ρ is the charge density and m is the mass of the charge carrier. In the superconduc-

tivity literature (see for example [31]), the pole in the imaginary part of the conductivity

is thus often related to a superfluid density. Because our system is not rotationally sym-

metric, the density to mass ratio defined in this way will depend on the orientation of the

superfluid velocity with respect to the order parameter. The proper way to interpret this

situation is probably that a suitably defined effective mass of the superfluid depends on

the direction of propagation.

An important observation is that in our system, the ω → 0 and k → 0 limits of the

Green’s functions commute. The residue of the pole in the conductivity is related to the

long wavelength limit of the current-current correlation function in the following way:

iResω=0σjj = lim
ω→0

lim
k→0

Gjj
33(ω, k) . (5.91)
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Figure 1. Plots of numerical results for g2

T
Resω=0Imσxx and g2

T
Resω=0Imσxx as functions of

temperature (solid lines), as well as analytical approximations at small ǫ (dotted lines) given by

equations (5.90).

The limit in the opposite order is related to a thermodynamic susceptibility:

lim
ky→0

Gxx
33 (0, ky) =

∂2P

∂v2
‖

and lim
kx→0

Gyy
33(0, kx) =

∂2P

∂v2
⊥

, (5.92)

where v‖ and v⊥ are superfluid velocities.11 It follows from eqs. (3.32) and (3.34) that

∂2P

∂v2
‖

=
∂j‖

∂v‖
= − 2

g2

ǫ2

96
while

∂2P

∂v2
⊥

=
∂j⊥
∂v⊥

= − 2

g2

ǫ2

48
. (5.93)

When combined with eq. (5.89), these results confirm eq. (5.90). To see how these limits

commute in greater detail, the reader is referred to appendix B and eqs. (B.8)–(B.13) that

give the general Green’s functions in the inviscid limit kx, ky ≪ ǫ.

As emphasized in this context in ref. [30], that the limits commute implies the system

really does become a superconductor below Tc. Given that the limits commute, the system

obeys a London type equation for small k and ω:

〈j3
x〉 ≈ − 2

g2

ǫ2

96
A3

x and 〈j3
y〉 ≈ − 2

g2

ǫ2

48
A3

y . (5.94)

If we now imagine the U(1) subgroup generated by T 3 ∈ su(2) is weakly gauged, these

London equations imply not only infinite DC conductivity but also a Meissner effect with

London penetration depths that scale as λ⊥ ∼ λ‖ ∼ 1/ǫ ∼ (Tc − T )−1/2.

11Note that to produce a perturbing magnetic field, we require a k that is transverse to the polarization

of the current-current correlation function. A perturbation of the form δA3

x ∼ eikx or δA3

y ∼ eiky is

gauge equivalent to zero and does not produce a response from the system. The Green’s function in this

limit vanishes.
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Figure 2. The squared speeds of second sound c2

‖ and c2

⊥ as functions of the reduced temperature

T/Tc (solid lines) as well as analytical approximations given by eqs. (3.33) and (3.35) close to Tc

(dotted lines).

6 Discussion

One of the nicest features of our results is their analytic nature. We were able to confirm

a number of previous numeric observations [2, 8, 9, 11, 32, 33] of this superfluid phase

transition. In particular, we saw explicitly that the phase transition was second order; the

difference in free energy between the phases scaled as (Tc −T )2 below the phase transition.

We saw the order parameter grew as ǫ ∼ (Tc − T )1/2 below Tc and thus has a mean field

critical exponent. We calculated the speed of second sound near the phase transition and

observed that it vanished linearly with the reduced temperature c⊥ ∼ c‖ ∼ (Tc − T ). We

looked at the pole at ω = 0 in the imaginary part of the conductivity and saw the same

scaling, σ ∼ i(Tc − T )/ω, that had been observed numerically in a related model [2] and

confirmed that the London penetration depth scales as λ ∼ 1/(Tc−T )1/2. This laundry list

of scalings (or critical exponents) is the same observed in the mean-field Landau-Ginzburg

model of a superconductor.

Close to Tc, eqs. (3.33) and (3.35) indicate that c2
⊥ = 2c2

‖, so one may wonder whether

such a formula is valid away from Tc as well. Numerical evaluations show that this is not the

case: see figure 2. At small temperatures, c2
⊥ approaches 1/3. Our numerical evaluations

are not sufficiently reliable at small temperatures to see whether c2
‖ has the same limit.12

12In the case of a scalar order parameter and a phase transition that does not break rotational symmetry,

we expect the speed of second sound to approach (d − 1)−1/2 as T → 0. This limit follows from eq. (3.30)

and two observations:

(1) At T = 0 the Lorentz symmetry breaking due to the temperature disappears and the pressure can

depend on µ and v only as P (µ2
− v2).

(2) By dimensional analysis, when T = v = 0, P ∼ µd.

We would like to thank Amos Yarom for discussion on this point.
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There are some other results in this paper that are worth emphasizing. For superfluid

velocities that are not too large, we were able to determine analytically the critical line in

the temperature-superfluid velocity plane separating the normal phase from the superfluid

phase. We calculated a large number of current-current correlation functions in the hy-

drodynamic limit and verified that they satisfied the non-abelian Ward identities. We also

investigated how the hydrodynamic poles in these correlation functions move around as a

function of k and ǫ.

Optimistically, we hope that someday this system will be more than a toy model.

The introduction described possible similarities of this system to helium-3 and p-wave

superconductors. Here we add a speculation about a possible connection with QCD. The

SU(2) global symmetry of our model could be thought of as the residual approximate

isospin symmetry of QCD at low energies and our chemical potential an isospin chemical

potential. The phase structure of QCD at non-zero isospin chemical potential has been

discussed by ref. [34]. Alas, there is no persistent current in the stable phases they discuss.

In the future, there are some questions that we would like to address. While we

focused on current-current correlation functions in the third isospin direction in this paper,

it would be good to study the full set of Green’s functions more carefully. Because of the

characteristic magnetic properties of superconductors, it would be interesting to investigate

the dependence of the correlation functions on an external magnetic field.

Another interesting direction to pursue is the connection between this work and the

membrane paradigm [35] where the horizon of a black hole, rather than the boundary of

an asymptotically anti-de Sitter space, is thought of as a fluid. Related to this direction

is the observation of ref. [8] that the fraction of the total charge density outside the black

hole horizon scales as Tc − T close to Tc, suggesting that this quantity might be related to

the superfluid density. We would like to know if this analogy can be made more precise.
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A Higher zero modes

One can also find other analytical solutions to (3.2) when the chemical potential is µ =

4k, where k is an integer, corresponding to higher zero modes of A1
x. In fact, numerical

exploration shows that these are the only values of µ for which zero modes occur. The

corresponding backgrounds are probably unstable, because they have higher free energy.

When µ = 4k, the corresponding zero mode can be written as

A1
x = ǫ

u2Pk(u
2)

(1 + u2)2k
, (A.1)
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k Pk(u
2)

1 1

2 1 − 4u2 + u4

3 1 − 12u2 + 82
3 u4 − 12u6 + u8

4 1 − 24u2 + 135u4 − 240u6 + 135u8 − 24u10 + u12

5 1 − 40u2 + 412u4 − 1560u6 + 12126
5 u8 − 1560u10 + 412u12 − 40u14 + u16

Table 1. Formulas for Pk(u2) with k ≤ 5.

where ǫ is an arbitrary constant and Pk(u
2) is a polynomial of degree 2(k − 1) in u2. It is

not hard to find a recursion formula for the coefficients of Pk(x). Writing

Pk(x) =
∑

n

a(k)
n xn (A.2)

and using equation (3.2), it follows that

n(n + 1)a(k)
n + 4k(k − n)a

(k)
n−1 −

[

4k2 − 2k(2n − 1) + n(n − 1)
]

a
(k)
n−2 = 0 . (A.3)

The boundary conditions needed to solve this recursion relation can be taken to be a
(k)
−1 = 0

and a
(k)
0 = 1, the latter representing the normalization of the series. One can check that for

each integer value of k the series terminates at order n = 2k, the last non-zero coefficient

being a2(k−1). In table 1 we provide analytic expressions for the first few Pk(u
2).

B The general case

Consider a general fluctuation of the form δAa
µ = aa

µ(u)e−iωt+ikxx+ikyy for a = 1, 2, 3 and

µ = t, x, y, in the limit where ω ∼ kxǫ ∼ kyǫ. Solving the system of differential equations

in the hydrodynamic limit leads to a set of Green’s functions with a pole that is a fifth

order polynomial in ω. Three of the roots of this polynomial correspond to the roots of the

third order polynomial we found for the sound modes. Two of the roots of this polynomial

correspond to the roots of the second order polynomial we found for the diffusive modes.

In other words, the six modes we found in the longitudinal and transverse sound cases

are actually different limits (ky → 0 and kx → 0, respectively) of three of the roots of this

fifth order polynomial in ω. Similarly, the four modes we found in the longitudinal and

transverse diffusion cases are different limits of two of the roots of this fifth order polyno-

mial.

In the limit kx, ky ≪ ǫ, we find that the roots are

ω = ±ǫ

√

71

13,488

√

1

2
k2

x + k2
y −

i(103,535 k2
x + 147,217 k2

y)

947,532
+ · · · , (B.1)

ω = − i

3
(2k2

x + k2
y) + · · · , (B.2)

ω = − 9iǫ2

4550
+

56

195
i(2k2

x + k2
y) + · · · , (B.3)
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ω = − 843iǫ2

72,800
−

7i(720,637 k2
x + 619,349 k2

y)

15,397,395
+ · · · . (B.4)

In the limit kx, ky ≫ ǫ, we find in contrast that

ω =

(

±11

65
− 3i

65

)

(k2
x + k2

y) + (B.5)

+
ǫ2

k2
x + k2

y

((

± 33

9100
− 9i

9100

)

k2
x +

(

± 260,803

26,644,800
− 131,519i

26,644,800

)

k2
y

)

,

ω =

(

± 11

130
− 3i

130

)

(k2
x + k2

y) + (B.6)

+
ǫ2

k2
x + k2

y

((

± 192,553

26,644,800
− 95,119i

26,644,800

)

k2
x +

(

± 33

9100
− 9i

9100

)

k2
y

)

,

ω = − i

2
(k2

x + k2
y) −

i(13k2
x + 5k2

y)

2928(k2
x + k2

y)
+ · · · . (B.7)

The case kx, ky ≪ ǫ admits an inviscid limit where the two-point functions of the currents

in the third isospin direction become

Gtt
33 = − 2

g2

ǫ2

96

k2
x + 2k2

y

ω2 − c2
‖(k

2
x + 2k2

y)
, (B.8)

Gtx
33 = − 2

g2

ǫ2

96

ωkx

ω2 − c2
‖(k

2
x + 2k2

y)
= Gxt

33 , (B.9)

Gty
33 = − 2

g2

ǫ2

96

2ωky

ω2 − c2
‖(k

2
x + 2k2

y)
= Gyt

33 , (B.10)

Gxx
33 = − 2

g2

ǫ2

96

ω2 − 2c2
‖k

2
y

ω2 − c2
‖(k

2
x + 2k2

y)
, (B.11)

Gyy
33 = − 2

g2

ǫ2

96

2(ω2 − c2
‖k

2
x)

ω2 − c2
‖
(k2

x + 2k2
y)

, (B.12)

Gxy
33 = − 2

g2

ǫ2

96

2c2
‖kxky

ω2 − c2
‖(k

2
x + 2k2

y)
= Gyx

33 . (B.13)

From eqs. (B.8)–(B.13) one can easily see that the limits ω → 0 and k → 0 commute,

implying that there is a Meissner effect; see section 5.6.

Another interesting limit to take of this fifth order polynomial in ω is the limit ω → 0:

P ∼ (k2
x + k2

y)
2

(

k2
x + k2

y +
ǫ2

16

)

×
(

k2
x + k2

y +
3ǫ2

70

k2
x + 2k2

y

k2
x + k2

y

)(

k2
x + k2

y +
71ǫ2

1120

2k2
x + k2

y

k2
x + k2

y

)

.

(B.14)

From this limit, one can extract correlation lengths that scale as 1/ǫ ∼ (Tc − T )−1/2.
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