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ABSTRACT: Using the AdS/CFT correspondence, we calculate the transport coefficients
of a strongly interacting system with a non-abelian SU(2) global symmetry near a second
order phase transition. From the behavior of the poles in the Green’s functions near the
phase transition, we determine analytically the speed of second sound, the conductivity,
and diffusion constants. We discuss similarities and differences between this and other
systems with vector order parameters such as p-wave superconductors and liquid helium-3.
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1 Introduction

A new and interesting holographic perspective on the physics of superfluids and super-
conductors was provided by refs. [1, 2]. These papers, which rely on the AdS/CFT cor-
respondence [3-5], provide a dual description of the superconducting phase transition as
the instability of a charged black hole to develop scalar hair. Recalling that the AdS/CFT
correspondence maps a strongly interacting field theory to a classical gravity description,
this new perspective holds promise for deepening our understanding of superconductivity
in strongly interacting regimes where BCS theory [6] is inadequate.!

!See ref. [7] for a review of the limits of BCS theory when confronted with high temperature supercon-
ductivity.



This paper takes as its starting point the holographic model proposed in refs. [8-10].
While in refs. [1, 2] the black hole develops scalar hair at the phase transition, in refs. [8-10]
the black hole develops non-abelian hair. More precisely, refs. [1, 2] begin with gravity plus
an abelian gauge field and charged scalar, while refs. [8-10] omit the scalar and promote
the abelian field to a non-abelian SU(2) gauge field. Recall that the AdS/CFT dictionary
maps gauge fields on the gravity side of the duality to global symmetries in the field theory.

We are intentionally vague about the distinction between a superfluid and supercon-
ductor. As emphasized in ref. [11], technically, the field theory dual to the black hole
construction undergoes a superfluid phase transition, i.e. spontaneous symmetry breaking
of a global symmetry. To interpret this transition as a superconducting phase transition,
the global symmetry must be weakly gauged. For many questions about superconductivity,
the distinction is irrelevant, and from the current-current two point functions we calculate
below, we can extract meaningful conductivities.

This SU(2) system has many desirable features compared to the scalar system. The
scalar system appears to be less universal; one must specify a potential for the scalar, or
at the very least a mass term. In comparison, up to the strength of the gravitational and
gauge couplings, the form of the Lagrangian for the SU(2) system is completely specified
by gauge invariance. Also, it appears more straightforward to embed the SU(2) system in
string theory or other UV completions. (See however ref. [12] for recent progress with the
scalar system.) This embedding can move the SU(2) system out of the toy model realm
and give us a microscopic Lagrangian for the field theory. Refs. [13, 14] discuss one possible
embedding where the SU(2) is a global flavor symmetry group for ' = 4 super Yang-Mills
broken to N/ = 2 by the addition of two hypermultiplets.?

Our reason for choosing this SU(2) system is very simple: We can get analytic results
near the phase transition. The differential equations that describe these holographic sys-
tems are nonlinear, and analytic solutions do not appear to be available in most cases. The
studies mentioned above make extensive use of numerics to see the phase transition, to
calculate the conductivities and critical exponents. Analytic results, for example the low
temperature approximation of the conductivity in ref. [2], are scarce.®> Our starting point
is the remarkable observation in ref. [13] that the zero mode for the phase transition for an
SU(2) gauge field in AdS5 has a simple analytic form. From this zero mode, we are able

to extract a long list of properties near the phase transition:
1. The speed of second sound near the phase transition.

2. That the phase transition is second order.

2The most naive embedding does not actually work. The original AdS/CFT correspondence gives us
a duality between N = 4 super Yang Mills and string theory in the curved background AdSs x S®. This
string theory can be approximated at low energies by a gauged supergravity in AdSs. The SU(4) gauge field,
which maps to the SU(4) global R-symmetry in the field theory, has an SU(2) subgroup. Unfortunately,
supersymmetry constrains the relationship between the gauge field coupling and the gravitational coupling
in this model, and the gauge field coupling is too weak for a superconducting phase transition to occur [10].
3See refs. [15, 16] for other nice analytic results for this class of models.



3. The conductivity and in particular the residue of the pole in the imaginary part of
the conductivity.

4. The system satisfies a London type equation that implies a Meissner effect.

5. A large selection of current-current Green’s functions in the hydrodynamic limit, and
that they satisfy the appropriate non-abelian Ward identities.

To clarify the title of the paper, recall that in a two component fluid, there are typ-
ically two propagating collective modes. The first mode corresponds to ordinary sound
in which the two components move in phase. The second mode corresponds to second
sound in which the two components move out of phase. Typically, ordinary sound can
be produced by pressure oscillations while second sound couples much more strongly to
temperature oscillations [17].

The order parameter for the phase transition in our SU(2) model is the set of non-
abelian global SU(2) currents, j4. As pioneered in ref. [8], we introduce by hand a chemical
potential in the third isospin direction which induces a charge density, (j1) # 0, that breaks
both the global SU(2) symmetry to a U(1) sugroup and also Lorentz invariance. There
is a superconducting phase transition at a critical temperature 7., below which a current
develops orthogonal to the third isospin direction that completely breaks the residual U(1)
symmetry and also breaks the remaining rotational symmetry of the system to U(1). For
convenience, we take this current to be in the direction (j!), leaving a rotational symmetry
in the yz-plane.

The fact that rotational symmetry is broken in the superconducting phase makes the
physics of this model rich and complicated. Our model appears to be a holographic real-
ization of the type of scenario described from a formal perturbative field theoretic point
of view in ref. [18]. Transport coefficients such as the speed of second sound and conduc-
tivities will depend on which direction we decide to look. Such a breaking of rotational
invariance is not unheard of in real world materials. To pick a particularly simple example,
a ferromagnet will break rotational symmetry when the spins align. Ref. [9] emphasized
a possible connection of this SU(2) model to a p-wave superconductor, where the order
parameter for the phase transition is a vector.

Of the real world materials that we considered, superfluid liquid helium-3 perhaps
comes closest in approximating the physics of our model. Liquid helium-3 at very low tem-
peratures is a p-wave superfluid. Two fermionic helium-3 atoms pair up to form a loosely
bound bosonic molecule with weak interaction between the orbital and spin degrees of free-
dom of the electrons [19]. The orbital and spin angular momenta are both equal to one,
and the order parameter is often written A,; where a indexes the spin angular momentum
and ¢ the orbital angular momentum, in surprisingly close analogy with our j;. There are
many stable phases of superfluid helium-3, depending on the pressure, temperature, and
applied magnetic field. The A phases are known to break rotational symmetry.

Despite plausible similarities between the symmetries of our model and various real
world materials, there is one crucial difference. While the order parameters for these

real world materials may have vector or tensor structure, they are not currents, and the



signature of the phase transition is not the production of a persistent current. In contrast,
our model has (j7) # 0.

We begin in section 2 with a discussion of the SU(2) model and the probe limit. We
choose to work in a limit in which gravity is weak and the non-abelian field does not back
react on the metric. Thus, at heart, in this paper we will be solving the classical SU(2)
non-abelian Yang-Mills equations in a fixed background spacetime, that of a Schwarzschild
black hole in AdS5.*

In section 3, we find a solution to the Yang-Mills equations near the phase transition.
This power series solution in the order parameter and superfluid velocities allows us to
demonstrate that the phase transition is second order and to calculate the speed of second
sound from thermodynamic identities.

In section 4, we make some formal remarks about the current-current correlation func-
tions for our model. We discuss the Ward identities that these Green’s functions satisfy
and some of their discrete symmetries. We also review how to calculate these two-point
functions using the AdS/CFT correspondence.

In section 5, through a study of fluctuations about our solution near the phase transi-
tion, we extract the current-current correlation functions in the hydrodynamic limit. From
the location of the poles, we independently confirm the speed of second sound calculated in
section 3. We are also able to calculate various damping coefficients and see explicitly that
the Green’s functions satisfy the non-abelian Ward identities. In the last part of section 5,
we consider the w — 0 and k — 0 limits. From these limits we extract conductivities and
also demonstrate that the system obeys a type of London equation.

2 The model

Consider the following gravitational action for a non-abelian gauge field F'{, with a cos-
mological constant A:

B 1
C2K2

1

S /ddﬂm\/_—g (R—2A) — v /dde\/_—g F4pFHAB (2.1)

Our gauge field can be re-expressed in terms of a connection A% as follows:
Fip = 0aA% — OpAY + [, AW AG (2.2)

where f%,. are the structure constants for our Lie algebra g with generators 7, such that
[To, Tp] = i fap°T.. We will take g = su(2) where T, = 0,/2, 0, are the Pauli spin matrices,
and the structure constants are fupe = €gpe.”

4 Attempts to solve the full set of coupled equations for a non-abelian black hole go back many years [20,
21]. See refs. [22, 23] for reviews.

®The g = su(2) indices a, b, c, ... are raised and lowered with the Kronecker delta §f. The capital indices
A,B,C ... are raised and lowered with the five dimensional space time metric gap. We will also shortly
introduce Greek indices pu,v,... which will be raised and lowered with the four dimensional Minkowski
tensor N = (—4+++).



The equations of motion for the gauge field that follow from this action (2.1) are
DA F*B = ( which can be expanded as

VaAF*AP 4+ o AL FAB =0 (2.3)

Einstein’s equations can be written

2

1 K
Rap + (A— §R> JAB = —5

1
27 <2F3AF“CB — §F3DF“CD9AB> . (2.4)

A solution to these equations in the case of a negative cosmological constant, A =
—d(d—1)/2, is a d+ 1-dimensional Reissner-Nordstrém black hole with anti-de Sitter space
asymptotics.® The only non-zero component of the vector potential can be taken to be’

AP = 4 pud=? . (2.5)

Thus we are using only a U(1) subgroup of the full SU(2) gauge symmetry; this black hole
solution requires only an abelian gauge symmetry. The line element for this black hole
solution has the form

ds® = !

- du” ] (2.6)

— f(u)dt? 2y
[f( )dt* 4 d +f(u)

where di? = dx? + dy? + dz? and the warp factor is

Flu) =1+ @ (ﬂf“ ~(1+ QY (i)d , (2.7)

The horizon is located at u = uy, and the Hawking temperature is

d— (d—2)Q?

Trr =
= 47Tuh

(2.9)

One subtle issue to be addressed is the boundary conditions for A3 at the horizon
u = wuyp and at the boundary u = 0 of our asymptotically AdS space. At the horizon of
the black hole, we must work in a local coordinate patch for the gauge potential such that
A} has a well defined norm, |A?¢"| < co. Given the form of g*, we actually require that
Ai(up) = 0. Our gauge potential (2.5) is well defined globally, at both the horizon and the
boundary, provided

p=—nful . (2.10)

The boundary value of the gauge potential, A}(0) = p, is interpreted via the AdS/CFT
dictionary as a chemical potential in the dual field theory. As such, g is an external
parameter of the field theory, and we should restrict our class of gauge transformations

SWe set the radius of curvature L = 1.
"The notation j is meant to evoke a charge density. The actual charge density p = —(d — 2)5/g>.



to those which do not affect pu. For example, the class of abelian gauge transformations
A} — A} + 9,A where A = ct is ruled out by this restriction.

Refs. [8-10] made the observation that below a critical temperature (or alternately
above a critical chemical potential), this charged black hole undergoes a second order
phase transition. The component of the gauge field AL develops a profile which not only
spontaneously breaks the remaining U(1) of the SU(2) symmetry but also breaks rotational
invariance. These authors considered the case d = 4 and interpreted the dual 2+1 dimen-
sional field theory as a p-wave thin film superconductor. More recently Basu et al. [13]
looked at the d = 5 case where they interpreted the dual 3+1 dimensional field theory as
a pion superfluid.®

In this paper, we shall make two simplifying assumptions. The first is to take the probe
limit, as was done in [9, 10, 13]. In this limit, x?/¢?> — 0 and the gauge field does not back
react on the metric. The metric remains that of an uncharged black hole in anti-de Sitter
space with warp factor ]

f@):1—<£> . (2.11)

Up,
Next, we restrict to the d = 5 case because of the observation made in ref. [13] that the
zero mode inducing the phase transition has an analytic form. Given this form, we are able
to compute analytically many properties of the field theory close to the phase transition
including Green’s functions, conductivities, diffusion constants, and the speed of second

sound. We show explicitly that the phase transition is second order.

3 Critical behavior

We specialize to AdS5 where we can construct an analytic solution to the gauge field
equations of motion close to the phase transition. We give the solution as the first few
terms in a power series in three small parameters: the order parameter ¢ = ¢2(j¥)/2
and chemical-potential-like objects we call superfluid velocities, A2(u=0) = A3 = v and
Ag (u=0) = .Ag = v, . Velocity is a bit of a misnomer here as the objects v and v, like the
chemical potential y, have mass dimension one. The name is motivated by their canonical
conjugacy to the currents j§ and ji.

From the AdS/CFT dictionary, the currents (ja) and external field strength A% in the
field theory can be determined from the small u expansion of the bulk gauge field AY:

1 “
AZ:AZ+592<]M>U2+”' . (3.1)

3.1 The background

We begin with small steps and construct the solution in the limit vy = v = 0. In the

probe approximation, the equations of motion for the gauge field take the form

(43)° (49)?
f

8See also [14] for a 341 dimensional system with similar symmetries and qualitative behavior but a more

DA} = A} and DAl = - (3.2)

complicated action.



where we have defined the linear second order differential operators

!
thag—%au and Dx:Dy585+<f?—%>8u. (3.3)
To keep the equations simple in what follows, we choose to put the horizon of the black
hole at up = 1. To restore units, dimensionful quantities such as the chemical potential p,
frequencies w, and wave-vectors k should be replaced with the dimensionless combinations
pup, wuy, and kuy, respectively.
As pointed out by ref. [13], when A} = 4(1 — u?) there is an analytic solution to the
second equation of (3.2) that is regular at the horizon, of the form

2
n
Al = ¢

> m . (3.4)

From eq. (3.1), the meaning of € in the dual field theory is, up to normalization, that
of an expectation value for the non-abelian current (j1) = 2¢/g%. The existence of the
solution (3.4) indicates that the superfluid phase transition occurs when u = 4. Given
this zero mode, we look for a general solution to egs. (3.2) as a series expansion in e:

2
1 _ u 3 5 7
Am—e(1+u2)2+ew1+ew2—i—0(e), (3.5)
AP = 4(1 —u?) + ¢y + €' dy + O(e°) . (3.6)

The solution describes the system for p = 4. Our strategy will be to fix the expectation
value of (jL) = 2¢/g? but to allow the chemical potential to be corrected order by order:
=4+ ebu + €*uy + ---. Thus, in solving the differential equations, we require the
boundary condition that the O(u?) term in w; vanish while ¢;(0) is allowed to be nonzero.

The differential equation governing ¢, is

4yt
Dipy = ———— 3.7
t¢1 (1 + ’LL2)5 ) ( )
which has the solution
1 8u?(1 + 3u? + u?)
=(1-u)0o — | 5u? — . 3.8
1= “)“1+96<“ 1+ u2)? (38)

We applied the boundary condition that ¢, vanish at the horizon. Also, du; corresponds to
a shift of the chemical potential by €261. The value of ¢y is constrained by the solution
for wy, as we now see. The differential equation for wy is

e 1+ 3ut o 4 6 8u?
L= P 0 +a22 T - w1+ )

1001 . (3.9)

9There are in fact a countable set of such zero modes with p = 4k where k is a positive integer. We
discuss these higher zero modes in appendix A. As the higher zero modes have higher free energy, they
should not affect the phase diagram of the system.



We require the boundary conditions that w; be regular at the horizon and vanish at the
boundary (u = 0). These conditions leave us with the solution

2 4 6 4 2 2 2
39u°® — 331u* — 819u“ — 369 13u~In(1
wy = O % -t ) Buln(l v o) (3.10)
(1+u?) 20,160(1 + u?)> 1680(1 + u?)
and the constraint
S = & (3.11)
M= %720 '

The term in wy proportional to ¢ is just the zero mode, and, consistent with our strategy,
we set ¢ = 0.

For the free energy calculation we perform below, we also need the next order correc-
tions, ¢o and ws. The expressions are too cumbersome to repeat here. The structure and
boundary conditions are analogous to the case of ¢ and w; considered above.

The near boundary expansion of our solution takes the form

Al = e + O(ut), (3.12)
42— (14 28 L et o) (3.13)
= € € .
t 6720 M2
281¢2 1343 — 13651n 2
— (4 _ _ 5 4 O 6 2 O 4
( 6720 ( 2,822,400 “2> €+ 0l )> w0,
where 13(—4,015,679 + 5,147,520 In 2
51 = (4015679 +5,147,5201n 2) (3.14)

75,866,112,000

These expansions match well with numerical solutions that we found close to the transition
temperature.

3.2 Superfluid flow

In this section, we generalize the background above to allow for the possibility of a super-
fluid flow. In terms of the bulk solution, this generalization requires turning on a constant
value of A3(u=0) = vy and A2(u=0) = v at the boundary corresponding to a non-zero
superfluid velocity (vj,v1,0). The differential equations describing this background are a
modification of egs. (3.2):

W fDrAA) = g" (ADADA) — AL ADAT) (3.15)
u? DAY = g (AL ALAS — ADALAY) (3.16)
ALO A} — AJOL A = fALDLAS — FAZOLAL + fALOLAS — fASDA,,  (3.17)

where we set Ai = A2 = A} = 0. The repeated covariant A indices on the left hand side
are not to be summed over. As before, we solve this system in a small € expansion, but
we also add another small expansion parameter 6 ~ v, ~ v). There is a non-uniformity in
the limit v; — 0 and v — 0, and we find two branches of solutions for small values of the
superfluid velocity. In the case where v, > v), we find

Atl — 0(62), (318)



u? 9 2)u2(u2 +41n(1 + u?))

T =
A, = 6(1 ) e(vi +vj 241 +12)2 +---, (3.19)
v u? v w?(u? + 41n(1 + u?))
r— 2 4 2y 3.20
y GUL (1+u2)? +e(v) + UL)UL 24(1 4 u?)? T (3.20)
1
AP = 4(1 —u?) + g(vﬁ +01)(1 —u?) (3.21)
vl o (1 — u?)(71 + 3u2 — 627u? — 279u5)
+€2 Il + ...
w2 6720(1 + u2)3 ’
2, .2
Ay 2 LB 4 9 4 ) (3.22)
L 144(1 + u?)3 ’ '
vZ 42,2 2 4
3. 2Y T u®(3 + 9u” + 4u*)
Ay =v) —e - (1 1 02) (3.23)
In the case v < v, we find
v2 4+ 02 42(1 — o2
A%:Elv ||11((1+;2))+..., (3.24)
[
2 20,2 2
1 u 9 o\ u”(u® —21In(1 4+ u?))
A:v = Em‘i‘E(’UL—F’U”) 24(1+u2)2 HRILN (325)
2 2(,2 2
vy ou 9 5 U1 u”(u® —21In(1 + u?))
y EU” (1+u2)? + (vl +vj) v 24(1 + u2)? T (3.26)
1
AP =41 —u?) + é(vﬁ +03)(1 —u?) (3.27)
+62vi + 0 (1 — u?)(71 + 3u2 — 627u — 279u) L
v? 6720(1 4 u2)3 ’
vi 0T u2(3 4 9u2 — 2uf
W ooy @A TG =) (3.28)
z = 7l Y 288(1 4 u2)3
v+ 02,2 3492 — 2t
4D =y, — @ T B4 9T~ 2u) (3.29)
U” U” 288(1 +u )

These solutions can be used to compute the speed of second sound perpendicular and
parallel to the order parameter AL. In a two component fluid, there are typically two
propagating collective modes, ordinary and second sound. In our probe approximation, we
see only the superfluid component, and the single collective motion available to us we call
second sound. From our holographic perspective, ordinary sound would involve fluctuations
of the metric so it is suppressed in the limit x?/g? — 0.

The speed of second sound, like that of ordinary sound, can be computed from deriva-
tives of the state variables. From ref. [11], the second sound speed squared in this probe

limit should be )
2 9j/0v

5= — )
2T 0p/opl—g
From eq. (3.1), the values of the charge current j = (j¥) and the charge density p = (j%)

(3.30)

can be read off from the order u? pieces of A? and A}, respectively.



Because our system is not rotationally symmetric, the speed of second sound will
depend on the direction of propagation. Let c¢; and ¢ be the speeds perpendicular and
parallel to the order parameter AL, respectively. The speed ¢, can be computed from the
background solution v, > v) while v can be computed from the solution with v > v, . In
the case v > v =0, we find that

1
AP =+ = (840 — 281 p)u? + - -+, (3.31)
140
3 2
Ay—’UJ_—W’UJ_(M—Zl)’LL + - (3.32)
and hence, up to higher order corrections in e,
71 140
2 2

~ ~—(Wu—4). 3.33
U ast “amt Y (3:33)

(We used the fact that g — 4 ~ T1€2/6720, which can be read off from (3.13).) In the case
v > v =0, at leading order A} remains the same but now we need
I L ) g t

70
Ai:U”—ﬁU”(M—ﬁl)uQ—F--- . (3.34)
We find that
¢ Hne tha , 1. 71 , 70
o ~ = e —(pu-—4).
™ 213,488 281

We confirm these results for ¢ and ¢, in sections 5.2 and 5.3 through an analysis of the

(3.35)

hydrodynamic poles in the current-current correlation functions. For numerical results
valid when € is not necessarily small, see figure 2.

These perturbative solutions in v; and v can also be used to analyze the phase diagram
of the system near the critical point pu. = 4. At the critical point, we expect the order
parameter to vanish, so € = 0. The value of A} at u = 0 can be reinterpreted as the value of
the chemical potential. These two facts give us a relation between the chemical potential
and superfluid velocity along the critical line separating the two phases. For superfluid
flow parallel to the order parameter, we expect

1
w4 évﬁ (3.36)
while for flow perpendicular to the order parameter, we have instead
1
wA A+ gvi . (3.37)

3.3 The free energy

We compute the contribution to the free energy from the gauge field term in the on-shell

action:
1
S = R d’x/—gF§gF*4P
BVols [ du 1
=0 [ (0uat - r@uab? + s (akad?) (3.38)
_ Vol ' du 12, 1,3 3
B 292 </0 U f(u)(aqu) + uAt (auAt) —0 .

,10,



For a background where AL = 0 and
AP = (44 0p1€® + Spaet)(1 — u?), (3.39)

the on-shell action is

BVoly o, 51,145,217 4979 .y .
Sune = 64+ —— - In 2 O . (340
2 = 442 * 510 T\ "2370.816.000 T 176,000 2) ¢ TOE) (3.40)

Here Vols is the spatial volume of the field theory while § = 1/T is the inverse temperature.
For the background where Al # 0 has condensed, we find in contrast that

BVoly o, 48,014,117 4979 A .
Sy = 64+ - In 2 O . (341
of = 42 *510¢ * \ "2370.816.000 T 176,400 2) ¢ TOE) (3:41)

The difference in the values of the two on-shell actions is

BAP = Syae — St = B;;(;l?’ (— 5;716064 + (’)(é”)) : (3.42)
Now AP can be interpreted also as a difference in the free energies because the free energy
(in the grand canonical ensemble) is minus the value of the on-shell action. That AP < 0
implies that the free energy of the superfluid phase is smaller and thus the superfluid is sta-
ble.

Moreover, from the fact that the free energy difference scales as ¢
phase transition is second order. For small €, ¢! ~ (u — p.)?. If we restore dimensions,
then p should be replaced by puy, = u/7T. Thus, €t ~ (T, —T)?. The derivative of P with

respect to temperature is continuous but non-differentiable.

4 we see that the

4 Formal remarks about Green’s functions

A field theory with a non-abelian global symmetry, such as SU(2), has by Noether’s The-
orem, a conserved current j4 which transforms under the adjoint representation of this
symmetry group. In this paper, we are interested in Green’s functions for this current, in
particular the Fourier transformed retarded current-current correlation functions:

Gy (p) =i / d'x e[k (), jy (0))6(2) - (4.1)

If the symmetry is non-anomalous, then we can weakly gauge it by coupling the current to
an external gauge field Aj,. Gauge invariance then implies that the correlation functions
obey a series of Ward identities. For the one-point function, the covariant derivative of the
current vanishes:

0= (0 + far® AL) (71) (4.2)
More usefully for the present discussion, there is also a Ward identity for the retarded
two-point function. We give here the Fourier transformed version:

0= (ipu65 + fau AL GHY (p) + fad (Y - (4.3)

— 11 —



For our gravitational system beyond the phase transition, the gravitational bulk values
of both A} and Al are non-zero. The AdS/CFT dictionary allows us to read At and (jo)
from the near boundary expansion of AZ using the relation (3.1). For the system under
consideration here, of the components of the external gauge field only A3 = p is non-zero
in the field theory. We have two non-vanishing components of the current, (j¥) and (j%).

Below, we compute the Green’s functions that describe the response of the system to
an external gauge field in the third isospin direction: G'5. The relevant Ward identities
componentwise are

0 = ip Gl — (j1)0a20"" (4.4)
0 = ipuGhy + pGis + (31)8™ |
0 = ip,GYy — uGys .

Our Green’s functions below obey this set of Ward identities.

Another important observation for the Green’s functions under consideration is the
symmetry under swapping the indices. We observe that

Ghy (p) = (=)0 G (p) (4.7)

where ¢(a,b) is equal to —1 if either a = 2 or b = 2, but not both, and 1 otherwise. This
symmetry follows from the discrete symmetries of the system. Given that our currents
are even under PT, i.e. parity and time reversal, if PT were a symmetry of the state, we
would expect the Green’s functions to be symmetric under an index swap. Our state is not
symmetric under PT, but it is symmetric under PT times a Zy operation on the su(2) Lie
algebra, 07 — —o; and o3 — —o3.

4.1 Computation of two-point functions
To compute the current-current correlators (4.1) in the probe approximation, we perturb
the background gauge field by sending

AY — AG +0AY . (4.8)

Consequently, the corresponding field strength F'%p changes to F{p + f4z, with f4p
given by
fip = 040Ap — OpoAL + P FAY A + P AYSASG . (4.9)

From (2.1), one can see that the quadratic action for §A% is

1

Sy = ——
2 492

du=gfipf*P", (4.10)
which gives the linearized equations of motion

VAL, + e A FS 5 + €AY S, =0 . (4.11)

The quadratic action (4.10) is in fact not well defined because the integrand diverges as
Inu at small v as we will see. We will regulate this divergence using holographic renormal-
ization [24].
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For definiteness, we will only analyze the case where the background gauge field doesn’t
depend on t or # and where its radial components A% vanish. We choose a similar gauge
for the perturbations by requiring A% = 0. Equations (4.11) can be solved approximately
in the limit of small u. An appropriate series expansion in this limit is

SAL(t, %, u) = oy (t, 7) + & (t, F)u® Inu + Bt D +--- . (4.12)

for some vector-valued functions «f(t, &), a(t, %), B(t,¥), etc. The values of « and (3 are
the only ones that can be specified independently; all the other functions appearing in this
expansion, namely @ and higher order corrections, can be expressed in terms of a and f.

Plugging (4.12) into (4.11) and looking at the term with the lowest power of u in the
equation with B = v, one finds a relation between & and a:

1
Gl = =5 [0 ffn, + €A, + AP, | (4.13)

u=0
Upon integration by parts in (4.10), the unregularized on-shell quadratic action can
be written as

Sgn—shell _ 1 /d4x 1(514%)((%5143) (4.14)

- 292 u u=1/A
The divergence that arises as one takes A — oo comes from the 0,A% term whose most

divergent piece goes like wlnwu at small u. This divergence can be regulated by adding the
counterterm

In A
S = =5y | d'wOA |91 8, + et A f, 4 s At

2 (4.15)

u=1/A

Note that this counterterm depends only on the values of the gauge field on the surface u =

1/A and on its derivatives along this surface, as required by holographic renormalization.
As a side note, a simpler formula for @% can be found if only A} and a3 approach

non-zero values at the boundary of AdS. In this case, only & is non-zero and is given by

1
~3
&, =—3 (00", — 3“31,042) . (4.16)
Assuming that a%(t, #) = a%e "“=7%) then
- 1 1
ozl?j — 5(—9 _ w2)a3 _ §py (wag’ —|—px0zi —|—py0z2 —|—pza§) . (4.17)

To compute the Fourier transformed two-point function, we first Fourier transform the
regulated on-shell action

1 d*p

—shell -

syl = [ 2L () (530) + cag o). (1.18)
9> J (2m)

where ¢ is an arbitrary constant introduced by the regularization procedure. Although such

an action is not a generating functional for the retarded Green’s function, using the proce-

dure outlined by Son and Starinets [25], we can identify the retarded Green’s function as'”

a, 20 [ﬁa(p) + cal (p)]
B = 2 o)

OFor a more precise discussion of how to derive these Green’s functions from an action principle and

(4.19)

generating functional, see ref. [26]. See also ref. [27] and the discussion in appendix C of ref. [28].
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»(p) is then a current density of the form

The linear response of a system to a perturbation «

(a(p)) = G (p)ab(p) - (4.20)

For most physical questions, the ambiguity in the choice of ¢ should be irrelevant. More
precisely, one can see from (4.13) that schematically & = 900« + da + «, so G (p) is am-
biguous up to an additive term analytic in p. Its Fourier transform G% () is ambiguous
up to an additive term of the from ¢;8*(z) 4+ c30\6*(x) + cg‘paA@pé‘l(x), where ¢, ¢}, and
cgp are constants that depend on the particular Green’s function we are computing. Since

in position space equation (4.20) reads
b)) = [ d' Gl (o = alla), (@21

it follows that the ambiguity in the choice of ¢ does not affect the result of (j5(x)) if

ab(z) = 0. In particular, the late-time, large-distance response of the system to localized

sources is not affected by this ambiguity. There are many subtleties in these calculations.

5 Fluctuations

To calculate the Fourier transformed retarded current-current correlation functions, we
need to study fluctuations of the SU(2) gauge fields Af(z) in our black hole background.

In the superfluid phase, the expectation value of the order parameter Al # 0 breaks
rotational symmetry and makes our task richer and more complicated than in the rotation-
ally symmetric case where only A? # 0. In the rotationally symmetric case, it would be
enough to consider a fluctuation with a time and space dependence of the form e~ ™+,
Given the breaking of rotational symmetry, we should in principle consider a more general
dependence where we allow for motion both parallel and transverse to the order parame-
ter: e~ wttikeztikyy  Because of the complexity of the full result, we shall not present a full
accounting of all the Green’s functions here. Instead we will content ourselves by studying
various informative limits where either k, = 0 or &, = 0.

We make a few other additional simplifying restrictions. Following in the footsteps
of refs. [9, 10] where the third isospin direction was interpreted as the U(1) of electricity
and magnetism, we will consider Green’s functions where at least one of the SU(2) isospin
indices is equal to three. In other words, we are interested in the linear response of the
system to external electric and magnetic fields.

The last simplifying restriction is to limit our study to the hydrodynamic regime,
where the order parameter, the frequency, and the wave-vector are small compared to
the temperature. In our dimensionless notation, €, k,w < 1. It is only in this limit that
we have analytic results although it is straightforward to calculate the Green’s functions
numerically beyond this regime.

We work out the Green’s functions in five cases. The first and simplest case, for which
we give the most detailed description of the calculation, is for a fluctuation transverse to
the order parameter and a wave vector transverse to both the order parameter and the
polarization of the fluctuation. We call this fluctuation the pure transverse mode. We next
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consider fluctuations that correspond to a second sound mode in two different limits, one
where the sound is propagating parallel to the order parameter and one where the sound
is propagating transverse. These two sets of fluctuations give us independent confirmation
of the speeds of second sound computed in section 3.2 from thermodynamics. Finally we
consider fluctuations that correspond to a diffusive mode, again in two different limits,
one where the diffusion is parallel to the order parameter, one in which the diffusion is
transverse. (In appendix B, we attempt to give a picture of the general case and how
the different limits of these Green’s functions fit together.) In section 5.6, we discuss
conductivities and the London equations.

In what follows, to avoid cumbersome indices, we define new variables for the back-
ground values of the gauge field:

Al=w and A2=d. (5.1)

5.1 Pure transverse mode

The pure transverse mode is described by fluctuations of the field Ag with only z spatial
dependence. We decompose the fluctuations into Fourier modes:

6A§(u,t,z) = a,(u)e Witz (5.2)

These modes transverse to the order parameter Al decouple from the other fluctuations of

the gauge field and are governed by the differential equation:

(K2 + W2 f — w?
12

where D, was defined in eq. (3.3).

+iw/4 gatisfies either ingoing or

Near the horizon u = 1, we find that a, ~ (1 — u)
outgoing plane wave type boundary conditions. Consistent with the presence of an event
horizon, it is natural to choose ingoing boundary conditions (the minus sign in the expo-
nent). This choice leads to retarded, as opposed to advanced, Green’s functions in the
dual field theory [25]. At the boundary u = 0 of AdS, we would like the freedom to set
ay(0) = ayo to some arbitrary value of our choosing, corresponding to perturbing the dual
field theory by a small external field strength. These two boundary conditions along with
the differential equation uniquely specify the functional form of a,.

While an analytic solution to eq. (5.3) does not appear to be available, one can easily
solve this equation in the limit of small w, k, and e. We can write the solution for a,, valid
to order €2k, 2w, k2, and w?, in the form

1 — 22 —iw/4
Ay = Ayo (W) (1 + eQayE + 62(4)(J,ywe + kQayk + w2ayw + .- ) . (5.4)
We find

2 3 9 2 4 4
ayez_u(—i-u—i-u)’ (5.5)
144(1 + u2)3
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iu?(12 + 27u® + 13u?)
864(1 + u?)3 ’

g = é (2 In(u) In G +Zz> + Lig(—u?) — Lig(u2)> . (5.7)

(5.6)

Qywe = —

The expression for a,, is too cumbersome to give here. Near the boundary, this solu-
tion (5.4) has the expansion

] 1
ay:ayo—i-ayo <7—@—ﬁ— 1 +§(W2—k2) <§—IH(U)>>U2+ (58)

From this near boundary expansion and eq. (4.20), we can calculate the two-point function

for the current in the hydrodynamic limit:

w € Twe w?ln?2

Y P2 R 69)

Note that the counter-term ambiguity, proportional to an arbitrary constant c, is of the
form predicted in eq. (4.17).

5.2 Transverse sound fluctuations

In general, second sound modes are expected to produce poles in the density-density cor-
relation function. We thus need to consider fluctuations in the conjugate field A7. If we
consider sound modes moving transverse to the order parameter, we can take the fluctua-
tions to have a y dependence but no = dependence. The self-consistent set of fluctuations
to consider that couple to 6 A7 (u,t,y) are

3
t
5A3(u,t,y) = ai(u)e_eriky, (5.10)
a
xT

where a = 1, 2.
The four fluctuations satisfy four second order ordinary differential equations and one
first order constraint:

Dyal — <—w2 _ ;)22 + k;2f> i 2@(@@?2— Wa3}) | (5.11)
Dot _ <—w2 _ ;)22 + k;2f> . 2iwdal — ingwa;? + kfad) 7 (5.12)
Dyaz = %ag - %af’ + ikf/ai, (5.13)
Dia? = —@af + %kai + @a; - Z%ai, (5.14)

0= %Bua? + ikOyal, + Woyas — (0,W)as , (5.15)

where D;, D,, and D, were defined in eq. (3.3). We checked that the derivative of the
constraint equation (5.15) with respect to u is a linear combination of all five differential
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equations (5.11)—(5.15). Thus if a solution of the first four differential equations satisfies
the constraint for some u, it will satisfy the constraint equation at all u.

There are seven integration constants associated with this linear system (5.11)—(5.15).
If we look at the horizon of the black hole at u = 1, we find seven different kinds of be-
havior. There exist six solutions that have plane wave behavior for al, a2, and ag near the
horizon of the form

(1 — )/t (5.16)

There is also a pure gauge solution,

a; = —iw, ad =ik, az=-W. (5.17)

T xT

As in the pure transverse case, we choose pure ingoing boundary conditions corresponding
to (1 — u)*i“’/ 4 behavior. At the boundary v = 0 of our asymptotically AdS space, we
would like to be able to perturb the system with arbitrary boundary values of a} and ag
but set the “unphysical” components of the gauge field al and a2 to zero. These are four
constraints and we have only three ingoing solutions. Thus we will also need to make use
of the pure gauge solution to enforce our v = 0 boundary conditions.

We solved the system perturbatively in w, k, and €. We present the results here in

the limit where w ~ k? ~ €2. The near boundary expansion (u = 0) of the solution
takes the form
k
al = —(a“];—ayow)mke (48K2 + 3¢® — 248iw) u® + - - | (5.18)
i . .
a2 = —W#Z% (21,8402 + 843¢® — 72,800iw) u® + ayo%ﬂﬂ +e (519)
3 _ (ar0k + ayow) 4 2 2 ,
Gy =y — 5w 1120k™ + 3k~(117¢* — 1120iw) (5.20)
1
+£(62 — 24iw) (8436 — 72,8002‘w)>u2 +
(awk + ayow)

a? = ag + k<1120k4 + 3K%(117¢2 — 1120iw) (5.21)

P

1
+@(e2 — 24iw)(843€% — 72,800iw)>u2 SRR
Note, the expression (axk + ayow) is not homogeneous in our scaling limit. We have in-
cluded the leading corrections proportional to as;g and ayg. There are terms in the expansion
proportional to u?Inu but they are subleading in w, k, and e.

The pole in this limit takes the form

7i
P = —72,800iw® + (43,120k* + 843€%) w? + 52(48001<:4 + 553k%€?)w +
T1k?€t
16
Let us study this cubic polynomial in w in two different limits. First, if £ < e, we find

— 141k*¢* — 1120K5 + - - - . (5.22)

three poles with the asymptotic form

71 147,217ik>
= £,/ k- 0 2
“ 13488 " Toarsz2 (5.23)

,17,



843ie>  4,335,443ik>
- _ D00 o 5.24
Y= T80 15397395 (5.24)

The first two poles are propagating modes that we identify with second sound. Indeed, the
speed of second sound agrees with the earlier result (3.33) from section 3.2. The position
of the third pole in this limit is determined mostly by the size of the order parameter e and
so we associate it with the zero mode that causes the phase transition from the superfluid
phase back to the normal phase.

In the opposite limit, k& > e, where the order parameter is small, the behavior should
be close to that of the normal fluid. In this limit, we find

11— 3 +£960,803 — 131,519
= () g2 i i 24 ... 5.25
v ( 65 ) * ( 26,644,800 > “t (5.25)
ik>  bie?
_ kT L 2
v 5 2028 T (526)

The first two poles are associated with the zero modes that cause the phase transition from
the normal phase to the superfluid phase and were discussed in ref. [9] while the third pole
is associated to the diffusive mode of our conserved charge density. Indeed, the location of
this diffusive pole is determined by the dynamics of the normal phase and was calculated,
without the order €? correction, long ago in ref. [29]. As we vary € and k the number of
poles cannot change. The two zero mode poles evolve into the sound poles of the previous
limit while the diffusive pole becomes the zero mode pole of the previous limit.

From these small u expansions, we can read off the eight Green’s functions G, G7¥,
G3t, GoY, G4, Ggg, Gg%, and GY;. From the discrete symmetries (4.7), we can also read
off four more Green’s functions with the indices swapped. Note the prefactor axk + ayow
in the small u expansion. This structure is necessary to satisfy the Ward identities (4.4).

As a further check, we consider a particular static limit of the density-density correla-
tion function. From egs. (4.20) and (5.21), we can read off the Green’s function,

2 k? 1

Gl = 57 <1120/€4—|-3k2(11762 —1120iw)+ 2 (€2 —24iw) (843> — 72,800iw)> . (5.27)

We are interested in the long wave-length limit of this Green’s function:

2 281
. tt _
This long wave-length limit is equal to a thermodynamic susceptibility,
0’P  Op

lim G%5(0,k) = =— = — . 5.29
klﬂ% 33(0, k) 92 ou ( )

Given this relation, we see that eq. (3.31) agrees with eq. (5.28).

5.3 Longitudinal sound fluctuations

Longitudinal sound modes correspond to the case where the fluctuations in A? depend only
on x. A self-consistent set of perturbations in this case is given by

6A%(u,t, x) = al(u)e Witihe
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6Ab (u,t, ) = ab(u)e WiTike, (5.30)

€T

where a,b = 1,2,3. These fields satisfy the following six second order equations and three

constraints:

Dia} = % (-Woal — ik®a? + kway, + k*a}) | (5.31)
uﬁ:%@mw@+%+wﬂﬁ+mm@+mﬁ+mmg, (5.32)
mﬁ:%q#+wﬂﬁ—mmm%ww§4WW§mW@@, (5.33)
D,al = % (—2W‘1>a§’ + ik®a; — kwa; + 2iPwa’ — (<I>2 + w2) a) (5.34)
Dya’ = % (—iWwa] — kwa} — ik®a; — (9 + w?) a2 — 2i®way) | (5.35)
D,a = % (—kwa} + iWwaj + Wa; — w?al) , (5.36)

0 = —®'a} +iwdya; + PIya? +ifkdual (5.37)

0= fWa+®a; — ®dya] +iwdyai +ifkdya? — fW,al (5.38)

0= —fWa2 +iwdya} + fWo,a2 +ifkd,al, (5.39)

with D; and D, as defined in (3.3). Again, the three constraint equations are consistent
with the second order equations in the sense that if they hold at some wu, they hold at all u.

The system (5.31)—(5.39) has nine integration constants. The nine possible behaviors
at the horizon are of two types: six plane wave solutions for al, a2, and a2 that behave as

(1 —u)*/ (5.40)

close to u = 1, and three pure gauge solutions given by

= —iwa® + dal, a} = —iwa?,
3
x

af = —iwa' — da?,
L = Wa? +ika?, (5.41)

2
ay
= ikal, ai = ika® —Wa?,

where o are arbitrary constants. As in the previous sections, we require no outgoing
modes at the horizon, which amounts to specifying three of the nine integration constants.
The other six integration constants are specified in terms of the values of the fields at u = 0.
In order to examine fluctuations in a;?’ and a%, we set their boundary values to a; and a,,
respectively, and the boundary values of the other four fields to zero.

Solving the system (5.31)—(5.39) perturbatively in w, k, and € under the scaling as-

2

sumption w ~ k% ~ €2, we find that the boundary behavior of the fluctuations is

k
al = fﬂQ—i%§9593152f(20,160k2-+-84362-— 72,800iw)u® + - - - | (5.42)
k 35k?
g:%og%w TSR + 3ie? + 320w)u? 4+ (5.43)
k
al = — MO EO e (4842 + 3¢ — 320iw)u’ + - (5.44)
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§ . .

a2 = —““]J’#%(m,moﬁ + 8437 — T2,800iw)u’ + agoTu’ 4o, (545)
k k

a3 = ap + W#% (26,880k* + 843¢* + 192k (79€2 — 840iw) + (5.46)
—113,264i€’w — 3,494,400w%)u? + - - -,
k

a3 = g0 — W#;—ﬁ (26,880k* + 843€* + 192k (79€> — 840iw) (5.47)

—113,264ie’w — 3,494,400w%)u? + - - - .
The pole here is again a cubic polynomial in w:
5
P = —72,800iw® + (39,760k* + 843¢%)w? + 61’(2688144 + 451k%?)w

71

= k%€t — 53k1e? — 280k5 . (5.48)

We consider the roots of the polynomial first in the limit £ < e:

T 71 103,535
=+4/= k— —ik? 4 ... 4
“= 213488 T oar sz T (549)

843, 5044459
- _ Y 5.50
72800 15,307,395 (5.50)

The first pair of poles correspond to second sound propagating in the direction parallel to
the order parameter with a speed consistent with our earlier result (3.35). The third pole
is related to the zero mode that causes a phase transition from the superfluid to the normal
phase. Next we consider the limit k > e:

+11—3i , +192,553 — 95,119 ,

— Iy 5.51

v 130 T 2664800 (5.51)
ik?  13ie?

_ o 5.52

“ 5 2038 (5.52)

The two sound poles have evolved into the zero mode poles, while the zero mode pole has
evolved into a diffusive pole.

From the small u expansion, we can read off a large number of Green’s functions
which we shall not bother to list. Similar to the transverse sound case considered above,
the prefactor (ayk + azow) in the expansion means that the Ward identities (4.4) will
be satisfied. However, there is more structure here. Note that ika? = 4a} — azgeu? and
ikal = —4a?. In our hydrodynamic limit at leading order in w and k, these two equations
are the Ward identities (4.5) and (4.6), respectively.

Before moving on, we note that

2 281

. tt _
/£1—>mo G33(0,k) = 2

(5.53)

which agrees with eq. (5.28), but k here is parallel rather than transverse to the order
parameter.
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5.4 Transverse diffusive mode

In addition to the sound mode found above, in the limit £ < ¢, we expect to find a diffusive
mode in the current-current correlator. We begin with the slightly simpler case of a mode
polarized transverse to the order parameter but propagating parallel to it, and follow in the
next section with a mode polarized longitudinal to the order parameter but propagating
transversely. Thus first we look for fluctuations in 5A5(u, t,z) and any other modes that
couple to it. A self-consistent set of fluctuations to consider is

SAG (u,t,z) = ag(u)e*i“’t“km , (5.54)

where a = 1,2, 3.
This set of fluctuating modes gives rise to the three differential equations at linear order:

(R +WAf —w? 5 2W ,

Dxag = 7 a, 7 ay (5.55)
2 2 2 2 : -
9 (K HWAf—w®—@% 5  2iW 5 2iwd
D.a, = 72 a, + 7 ay, — 72 Qy s (5.56)
B f —w? — o2 2iwd
Dxa; = 7 azll + 7 az . (5.57)

As before, we solve this set of equations perturbatively in the limit w ~ k% ~ €2. The
small u expansion of the solutions, from which we may read off the Green’s functions, takes

the form:
al = %22146%2 T (5.58)
af/ = %2]{36(2#{32 + 3w)u? + -, (5.59)
1
ad = ayo — %ﬁ <—1680/<:6 + 1264 (29¢2 + T00iw) — 6k2(* + 28i%w — 10,780w?) +
1
+w(9ie* + 4766¢%w — 109,200iw2)>u2 + §ay0k2u2 Inu+--- . (5.60)

The poles at leading order in this perturbative expansion come from a quadratic polynomial

n w:
3i(140k2 + 3¢€2 T0k2 + 3e¢2)k2
P — 65?4+ 21 70+ ), ! ;5 il (5.61)

As before, we consider the roots of this polynomial in two limits. First we consider k£ < e,

in which case we find

9 o, 112 ,
_ k24 5.62
Y= om0 T T (5.62)
2ik?2
w= T (5.63)

The first pole is associated with the zero mode that causes the phase transition from the
superfluid phase to the normal phase while the second pole comes from a diffusive mode
of the charge density.
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Next, we consider the limit k > ¢ where we recover the zero modes of the normal phase,

_ Al -3i,  E33-0i,

- 64
w 65 9100 (5.64)

At leading order, the location of the pole is the same as that of eq. (5.25). However, the

subleading order €% corrections are different.

5.5 Longitudinal diffusive mode

We continue the discussion by looking at modes polarized longitudinal to the order pa-
rameter but propagating transversely. We consider fluctuations 6 A2 (u,t,y) and all others
coupled to it:

0AG (u,t,y) = aj(u)e™ Y,

SAT(u,t,y) = af (w)e R (5.65)
SAY(u,t, ) = abw)e

where a,b = 1,2. This set of fluctuations obeys the five second order equations and two
first order constraints:

1
Dial = 7 (~Woal — ik®al + k*aj + kwa,) | (5.66)
1
Dia} = 7 (iWwad + (k* + W?) o} + kwa? + ik®al) (5.67)
1
Dxal = F (ik@af + 22’<I>wa§ — kwa; — (<I>2 + wz) ay) ) (5.68)
1 ) . .
D2 = F (_kawai — kwa? + (fI/V2 — 9% — w2) ai —ik®a; — 2z<1>way) , (5.69)
1 . .
Dyad = 7 ((fK* —w?) al + iWwai +ifkWa, + WPay) (5.70)
0 = —®'a? + iwd,a; + ®I,a? + ifkauaglj , (5.71)
0= fWa+dal — ®dya} + iwdya? — fWoua> + ifkauaz . (5.72)

At the horizon, there are two pure gauge solutions, three ingoing solutions, and three
outgoing solutions. We discard the outgoing solutions and use the remaining degrees of
freedom to choose the boundary values of the five fluctuations. In particular, we set the
boundary values of all the fluctuations to zero save for a2, which we set to azo. The near

boundary expansion of the solution takes the form:

3k2
a,tl = %—4 6(]{32 — 3iw)u2 + axoiuz +oe (5.73)
ag0 33ik>we
a?:% n u At (5.74)
a; = —%33]{36(4) u? 4 (5.75)
a
a2 = _%031'1%(13 — Biw)u® + -, (5.76)
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1
ad = ax0+-939————<840k6-—16k4(13éz+-420uu)-amEQ-48uu)aheQ4—4550w)
P 3360
1
43#@*+mméw—wj&m%yﬂ+§%ﬁﬁﬂmu+~-. (5.77)

The pole, similar to the case considered previously, is a quadratic polynomial in w:

P:BWM—&H+%fw—3#8—H (5.78)
35 35 ' '
In the limit &k < € we find a zero mode and a diffusive mode:

9% o, 560 ,
- aiely ST 5.79
Y T s0¢ Tast T (5.79)

.k2

WZJ?+W_ (5.80)

In the opposite limit, we find two zero modes:

+11—3i , +33-0i
W= "k Y2 (5.81)
130 9100

The structure of the small u expansion of the gauge fields is again related to the Ward
identities. We see that z'k:az = da} — agoeu? and z'k:aglj = —4a?, which are restatements of
the Ward identities (4.5) and (4.6), respectively.

We have thus far considered the current-current correlation functions in five special
cases. While the results are simpler, our presentation has the disadvantage of obscuring the
relationship between the various cases. We make some remarks about and provide some
results for the general case in appendix B.

5.6 Conductivity and London equations

In this section, we begin by studying the response of the system to a homogeneous, time
dependent electric field, 5A? ~ e ™! and end with a discussion of the London equations.
A homogeneous electric field should produce a current in the system via Ohm’s Law. To
investigate the conductivity in this long wavelength limit, we set k = 0 for the two-point
functions computed above.

The case of an electric field orthogonal to the order parameter is simple; a current and
nothing more is produced. From the pure transverse mode and eq. (5.9), we have

ny(w)—3 —i—i—i l—i w+cw? ) + (5.82)
BYT g2\ 48 2 48 ' '

Reassuringly, this result agrees with the k& — 0 limit of the Green’s functions associated to
transverse sound propagation and the transverse diffusive mode.

For an electric field parallel to the order parameter, the physics is richer. We find a
current in the z direction but also oscillating (or precessing) charge densities associated
with the one and two isospin directions:

3 €2 (1 €2 9
(Z:B:am(]—Fam(] —%—F’L §+@ wlu +, (583)
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€
aj = a$01u2 +- (5.84)

TEw
a? = —axOEUQ +ee (5.85)
This near boundary expansion agrees with the k& — 0 limit of the expansions for longitudinal

sound and diffusion considered above. The associated Green’s functions are

2 € 1 €
W)= 5| —=+i| 2+ 5.86
50 =5 (-5t (GHag) @)+ (5.56)
2 €
Gl (w) = ~ 71 + (5.87)
2 tew
GE(w) = 216 SRR (5.88)

Identifying the electric field F; = iwdA; and recalling Ohm’s Law, the conductivities
are related via eq. (4.20) to the retarded Green’s functions,
_ G55(W) _ G3(W)

Opr(W) = . and oyy(w) = rran (5.89)

The terms proportional to €2 in G%% and G%4 thus produce a pole in the imaginary part of
the respective conductivities. As discussed in refs. [2, 30], by the Kramers-Kronig relations
(or by properly regularizing the pole) there must be a delta function in the real part of
the conductivity, indicating the material loses all resistance to DC currents and suggesting
the phase transition is to a superconducting state. While in refs. [2, 30], the pole was seen
only numerically, here we can calculate the strength of the pole analytically close the phase
transition. Its residue is given by

;2 ;2
Resy—g0uz = %19% .. Resy—00yy = 9%24% . (5.90)
In figure 1 we show a comparison between numerical computations of the residues of the
poles at w = 0 in 04, and oy,, along with the analytic approximation (5.90) close to T' = T...
In the Drude model for an ideal metal, the conductivity takes the form o = ip/mw
where p is the charge density and m is the mass of the charge carrier. In the superconduc-
tivity literature (see for example [31]), the pole in the imaginary part of the conductivity
is thus often related to a superfluid density. Because our system is not rotationally sym-
metric, the density to mass ratio defined in this way will depend on the orientation of the
superfluid velocity with respect to the order parameter. The proper way to interpret this
situation is probably that a suitably defined effective mass of the superfluid depends on
the direction of propagation.
An important observation is that in our system, the w — 0 and k — 0 limits of the
Green’s functions commute. The residue of the pole in the conductivity is related to the
long wavelength limit of the current-current correlation function in the following way:

i Res,—q0j; = lim Jim GI(w, k) . (5.91)
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Figure 1. Plots of numerical results for %Reswzolmom and %Reswzolmam as functions of
temperature (solid lines), as well as analytical approximations at small e (dotted lines) given by
equations (5.90).

The limit in the opposite order is related to a thermodynamic susceptibility:

o°p >°p
=507 and kligo G0, ky) =

. (5.92)
i (%i

li 2 (0, k
kylgo 33 (0, y)

where v and vy are superfluid velocities.!! It follows from egs. (3.32) and (3.34) that

O*P  0j 2 ¢ O*P  9j 2 €
o 2 e S =S 2O (5.93)
(%” dy| g2 96 dvi  Ovy g2 48
When combined with eq. (5.89), these results confirm eq. (5.90). To see how these limits
commute in greater detail, the reader is referred to appendix B and eqs. (B.8)—(B.13) that
give the general Green’s functions in the inviscid limit k;, ky, < e.

As emphasized in this context in ref. [30], that the limits commute implies the system
really does become a superconductor below T,.. Given that the limits commute, the system
obeys a London type equation for small £ and w:

3y, 2 € 13 3\

Y~ oAl and )R- (59

If we now imagine the U(1) subgroup generated by 7% € su(2) is weakly gauged, these
London equations imply not only infinite DC conductivity but also a Meissner effect with

London penetration depths that scale as A| ~ A\ ~ 1/e ~ (T — T)=1/2.

"Note that to produce a perturbing magnetic field, we require a k that is transverse to the polarization
of the current-current correlation function. A perturbation of the form §A2 ~ e or 5143 ~ et g
gauge equivalent to zero and does not produce a response from the system. The Green’s function in this
limit vanishes.
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Figure 2. The squared speeds of second sound cﬁ and ¢% as functions of the reduced temperature
T/T. (solid lines) as well as analytical approximations given by egs. (3.33) and (3.35) close to T,
(dotted lines).

6 Discussion

One of the nicest features of our results is their analytic nature. We were able to confirm
a number of previous numeric observations [2, 8, 9, 11, 32, 33| of this superfluid phase
transition. In particular, we saw explicitly that the phase transition was second order; the
difference in free energy between the phases scaled as (T, —T)? below the phase transition.
We saw the order parameter grew as € ~ (T, — T)Y/? below T, and thus has a mean field
critical exponent. We calculated the speed of second sound near the phase transition and
observed that it vanished linearly with the reduced temperature c; ~ ¢ ~ (T, = T). We
looked at the pole at w = 0 in the imaginary part of the conductivity and saw the same
scaling, o ~ i(T. — T)/w, that had been observed numerically in a related model [2] and
confirmed that the London penetration depth scales as A ~ 1/(T, —T)'/2. This laundry list
of scalings (or critical exponents) is the same observed in the mean-field Landau-Ginzburg
model of a superconductor.

Close to T, egs. (3.33) and (3.35) indicate that ¢2 = 2Cﬁ, so one may wonder whether
such a formula is valid away from 7T, as well. Numerical evaluations show that this is not the
case: see figure 2. At small temperatures, ci approaches 1/3. Our numerical evaluations

are not sufficiently reliable at small temperatures to see whether cﬁ has the same limit.!?

1211 the case of a scalar order parameter and a phase transition that does not break rotational symmetry,
we expect the speed of second sound to approach (d — 1)71/2 as T'— 0. This limit follows from eq. (3.30)
and two observations:

(1) At T' = 0 the Lorentz symmetry breaking due to the temperature disappears and the pressure can
depend on p and v only as P(u? — v?).

(2) By dimensional analysis, when 7' = v = 0, P ~ p?.

We would like to thank Amos Yarom for discussion on this point.
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There are some other results in this paper that are worth emphasizing. For superfluid
velocities that are not too large, we were able to determine analytically the critical line in
the temperature-superfluid velocity plane separating the normal phase from the superfluid
phase. We calculated a large number of current-current correlation functions in the hy-
drodynamic limit and verified that they satisfied the non-abelian Ward identities. We also
investigated how the hydrodynamic poles in these correlation functions move around as a
function of k and e.

Optimistically, we hope that someday this system will be more than a toy model.
The introduction described possible similarities of this system to helium-3 and p-wave
superconductors. Here we add a speculation about a possible connection with QCD. The
SU(2) global symmetry of our model could be thought of as the residual approximate
isospin symmetry of QCD at low energies and our chemical potential an isospin chemical
potential. The phase structure of QCD at non-zero isospin chemical potential has been
discussed by ref. [34]. Alas, there is no persistent current in the stable phases they discuss.

In the future, there are some questions that we would like to address. While we
focused on current-current correlation functions in the third isospin direction in this paper,
it would be good to study the full set of Green’s functions more carefully. Because of the
characteristic magnetic properties of superconductors, it would be interesting to investigate
the dependence of the correlation functions on an external magnetic field.

Another interesting direction to pursue is the connection between this work and the
membrane paradigm [35] where the horizon of a black hole, rather than the boundary of
an asymptotically anti-de Sitter space, is thought of as a fluid. Related to this direction
is the observation of ref. [8] that the fraction of the total charge density outside the black
hole horizon scales as T, — T close to T, suggesting that this quantity might be related to
the superfluid density. We would like to know if this analogy can be made more precise.
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A Higher zero modes

One can also find other analytical solutions to (3.2) when the chemical potential is pu =
4k, where k is an integer, corresponding to higher zero modes of Al. In fact, numerical
exploration shows that these are the only values of p for which zero modes occur. The
corresponding backgrounds are probably unstable, because they have higher free energy.

When p = 4k, the corresponding zero mode can be written as

Al — u? Py, (u?)

e -
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Pk(u2)
1
1 —4u? + ut

1— 1202 + 2yt — 1205 + 8
1 — 24u? + 135u® — 240u’ + 13508 — 24410 + 412
1 — 40u® + 412u* — 156008 + 1212648 — 156000 + 412u!? — 40u!* + u!°

T W N =

Table 1. Formulas for Py (u?) with k < 5.

where € is an arbitrary constant and Py (u?) is a polynomial of degree 2(k — 1) in u?. It is
not hard to find a recursion formula for the coefficients of Py (z). Writing

Py(x) = Z al®) zn (A.2)

and using equation (3.2), it follows that
n(n+ 1)a® + ak(k —n)al® | — [4k* = 2k(2n — 1) + n(n — D] oy =0 . (A.3)

The boundary conditions needed to solve this recursion relation can be taken to be a(_kl) =0

and aék)

= 1, the latter representing the normalization of the series. One can check that for
each integer value of k the series terminates at order n = 2k, the last non-zero coefficient

being ay(;_1). In table 1 we provide analytic expressions for the first few P (u?).

B The general case

Consider a general fluctuation of the form 647, = aZ(u)e_MHkM”kW for a = 1,2,3 and
p=t,z,y, in the limit where w ~ kye ~ kye. Solving the system of differential equations
in the hydrodynamic limit leads to a set of Green’s functions with a pole that is a fifth
order polynomial in w. Three of the roots of this polynomial correspond to the roots of the
third order polynomial we found for the sound modes. Two of the roots of this polynomial
correspond to the roots of the second order polynomial we found for the diffusive modes.

In other words, the six modes we found in the longitudinal and transverse sound cases
are actually different limits (k, — 0 and k; — 0, respectively) of three of the roots of this
fifth order polynomial in w. Similarly, the four modes we found in the longitudinal and

transverse diffusion cases are different limits of two of the roots of this fifth order polyno-

mial.
In the limit k;, ky < €, we find that the roots are
11 i(103,535 k2 + 147,217 k2)
=+ —k2 4+ k2 — a LA B.1
W= 1gass V2t T 947,532 e (B.1)
i
w= g2k k) 4 (B.2)
9ie? 56
= — 2k KA - B.3
W= 1550 T 105 Bk TRy o (B-3)
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€2 Ti(720,637 k2 + 619,349 k2
w:_84316 . Z( T y)+ ) (B4)
72,800 15,397,395

In the limit £, ky, > €, we find in contrast that

— (g o) 24K+ (B.5)
2 ; ;
+k2 + k2 ((i 9230 - 9%0) Kot (i 262,6653(31’48,23?60 - 223?«3111151,158()) kZ) ’
<iﬁ — ﬁ) (k2 + k) + (B.6)
2 ) )
+k2 + k2 ((i 2;,%%1’45,58?60 B 26%213;2%0) e+ (i% B 9%0) ki) ’

i(13k3 + 5k7)

7
2Lk % Y
(e k) = Soaster 7 12)

SR+ K (B.7)

W = —

The case k,, ky < € admits an inviscid limit where the two-point functions of the currents

in the third isospin direction become

" 2 ¢ ki+2k
337 7 206 w2 2 2 (B.8)
9% 96 w —cH(k: —|—2k:)
2 € wk
G = -5 — - =G4 B.9
33 92 96 wg _ CH(kQ + 2]{32) 33> ( )
2 ¢ 2wk
Gl =-S5 e =GY,, (B.10)

9% 96 w? — R (k2 + 2k7)

21.2
o 262 W 2k (B.11)
33 9?96 w2 — (k2 + 2k2)

9 2 2(w2 — chQ)

[

vy 2 & B.12
33 9296 w? — (k2 +2k3) (B-12)
vy 9 €2 QC”k ky ”

Gay = ——— =Gy . (B.13)

9296 w2 — & (k2 + 2k2)

From egs. (B.8)—(B.13) one can easily see that the limits w — 0 and k& — 0 commute,
implying that there is a Meissner effect; see section 5.6.
Another interesting limit to take of this fifth order polynomial in w is the limit w — 0:

2
P~ (K2 + k2)? <k2+k:2 - >

16
B.14
x k2+k2+362k2+2k5 k2+k2+—716272k92”+k§ o
SRR (V- T 1120 k24K )

From this limit, one can extract correlation lengths that scale as 1/e ~ (T, — T)~1/2.
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